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jected dividends (hence creating the notion of a break-even date).
It is obvious, from this preliminary analysis, that the equity level

will be the determining factor in the convertible bond value, where
“value” means what specifically distinguishes the convertible bond
from an ordinary fixed-income investment or an ordinary equity invest-
ment. This is the reason why the quantitative analysis of convertible
bonds lends itself naturally to the Black-Scholes analysis where the
share price is the state variable, and dynamic hedging strategies are the
basis for the valuation of the embedded option. Not only will the con-
vertible bond value depend on the volatility of the share, but we shall
expect the share price itself to set the dividing line between equity
behavior and bond behavior (as well as between the ensuing concerns,
respectively about share price volatility and credit quality volatility). It
turns out indeed that the Black-Scholes analysis provides just the right
unifying framework to formulate the convertible bond pricing problem.
Unification comes at a cost, however. For we can no longer ignore, once
the share becomes the driving factor, what direct effect it may have on
the issuer’s credit quality. And if such an effect is to be assumed, we can
no longer but model it explicitly.
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1 Introduction
Convertible bonds are hybrid securities which offer equity-like returns
when the share of the issuing firm is strong, yet behave like conserva-
tive fixed-income investments when the stock market is either stag-
nant or negative. Indeed the convertible bond is essentially a bond that
can be converted into shares, a feature which allows the equilibrium of
interests between the three parties involved, the issuing company, the
equity investor and the fixed-income investor to be struck more effi-
ciently than was the case when equity and fixed-income were treated
as separate investment categories, involving different, if not incompat-
ible, standards.  As the company issuing the convertible bond sells an
embedded option to convert into its shares, it expects its creditors to
charge a lower fee than would otherwise apply to its credit class, hence
is able to pay lower coupons. Reciprocally, the fixed-income investor
earning these coupons is rewarded by his upside participation in the
performance of the share. The equity investor, on the other hand,
whose basis of judgment is the price of the equity and its expected
return, makes up for the premium paid over parity by the downside
protection that the bond floor automatically provides, and by the fact
that the convertible bond coupons are usually set higher than the pro-
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2 Credit spread and the 
fixed-income logic
The quantitative measure of credit quality has traditionally been the
credit spread. Risky bonds are priced by the market at a discount to sov-
ereign debt, and the price difference, when expressed in terms of the
excess in the implied yield, is the credit spread. Bonds maturing at differ-
ent dates can imply different credit spreads, hence creating credit spread
term structure. When the bonds are zero coupons, the term structure of
credit spread is equivalent to giving the whole array of risky discount fac-
tors, etc. So credit spread is really a notion from fixed-income analysis,
and for that reason quite foreign to a framework such as Black-Scholes,
where the state variable is the underlying share. As long as bond pricing
was the sole concern, all that the fixed-income analyst needed was the
spot yield curve and the spot credit spread curve. The necessity of model-
ing stochastic credit spread, however, became evident with the emer-
gence of credit derivatives. But when the derivative payoff did not specif-
ically depend on the credit spread (for instance options on corporate
bonds), a risky yield curve model could still be developed along the lines
of the traditional yield curve models (Hull and White, Black Derman Toy,
Heath Jarrow Morton), in such a way that the changes of credit spread
curve and the changes of risk-free yield curve would indistinguishably be
captured by the overall changes of the risky yield curve. Only when cred-
it spread changes had to be separately modeled did the need arise to iden-
tify the real “physical” variable underlying these changes, the instanta-
neous probability of default of the issuer (assuming a deterministic
recovery rate). Just as the instantaneous interest rate is the state variable
driving the basic yield curve models (e.g. Hull and White), the instanta-
neous probability of default, or hazard rate, drives the stochastic credit
spread models. One writes directly the stochastic process followed by the
hazard rate (possibly with a time dependent drift in order to match a
given spot credit spread curve) and generates different prices for risky
zero coupon bonds in different states of the world, in other words, differ-
ent credit spread curves.

3 Credit spread and the convertible bond
The relation between the convertible bond and the credit spread
seemed at first to arise only from the “bond character” of the convert-
ible. The embedded equity option would be priced in the Black-Scholes
framework alright, where discounting takes place at the risk-free inter-
est rate, but the presence of a fixed-income part of course implied that
“something” had to be discounted under a risky curve, if only to be con-
sistent with the fixed-income analysis of the issuer’s debt. The difficul-
ty, however, was that bond component and equity component were not
readily separable. On the contrary, we saw that the convertible bond
could very well display a mixed behavior, now like equity, now like
bond, depending on the share level. This is why the question “How
exactly to apply the credit spread in the convertible bond pricing tree,

and how to link that to share price?” became the central problem in
convertible bond valuation.

One early attempt interpreted the mixed behavior of the convertible
bond in probabilistic terms (Goldman, 1994). It is only with  some proba-
bility, so the argument went, that the convertible bond would end up like
equity or end up like pure bond, and that probability was identified with
the probability of conversion.  Ignoring what distortions might arise
from other embedded options, such as the issuer’s call or the holder’s
put, the suggestion was to discount the value of the convertible bond, at
nodes of the pricing tree, with a weighted average of the forward instan-
taneous risk-free interest rate and the forward instantaneous risky rate.
The delta of the convertible bond, now identified with the probability of
conversion, would determine this weighting. While this approach cer-
tainly fulfilled the wish that the convertible bond be treated as equity
when most likely to behave like equity, and as bond when most likely to
behave like bond, it certainly did not explain the financial-theoretic
meaning of the mixed discounting. Perhaps it can be argued, in a global
CAPM framework, that some future cash flow ought to be discounted
with some exotic mixture of some given discount rates. The problem is,
no sense can be made of a situation where the mixing takes place locally,
and the weighting varies from one state of the world to the other.

More recently, another approach (Tsiveriotis & Fernandes 1998)
thought better to interpret the mixed behavior of the convertible in  actu-
ality rather than  potentiality. If the convertible bond is really a combina-
tion of a bond and an equity option, why not actually treat it like one,
and split it into two components, one to be discounted risk-free and the
other risky? When there is involved the possibility of early call or early
put, however, the two discounting procedures cannot take place com-
pletely separately, so what T&F have proposed is to throw into the bond
component whatever value accrues from the issuer’s liability (either
promised or contingent cash flows), and into the equity component
whatever value accrues from the holder’s contingent claim to convert
into the issuer’s share or from the issuer’s  own contingent claim (the
idea being that the issuer could always deliver his shares, default or no
default, and that he would not exercise his option to call back the con-
vertible in case of default or shortage of cash). The two components are
priced as two distinct assets. The equity component has the equity or
nothing payoff as termination value, and the bond component (or the
cash-only component, as T&F labeled it) the cash or nothing payoff. The
two backward recursions are then coupled through the following algo-
rithm. In case the convertible bond checks for early conversion—or early
call– in a certain state of the world, the equity component is set equal to
conversion value—or early redemption value—in that state, while the
cash-only component is set to zero; alternatively if the convertible bond
checks for early put, the cash-only component is set equal to the put
strike and the equity component is set equal to zero. The cash-only com-
ponent, on the other hand, earns the coupons in all states of the world.

It is interesting to note the circularity, or self-reference, that is inher-
ent in both approaches. The value of the convertible bond crucially
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depends on the proportion in which the credit spread is applied to it, yet
this proportion ultimately depends on the convertible bond itself. In the
first approach the proportion is determined by the delta which is itself a
derivative of the convertible bond value, and in the second, the propor-
tion is determined by the value of the cash-only component relative to
the equity component, which in turn depends on the particular con-
straint that the convertible bond as a whole checks, the conversion con-
straint, the call constraint or the put constraint. Mathematically, this
translates into non-linearity. This is the reflection of the fact that the
risky component of the convertible, which is the value that the holder is
liable to lose in case of default—and which, by the same token, he will
argue he is entitled to recover a fraction of when the assets of the
defaulted company are liquidated —, depends on the optimal behavior of
the holder himself 1. While the recovery entitlement of the holder of a
straight bond is a straightforward fraction of the present value of the
bond, the holder of an option-embedded bond, such as the convertible
bond, will typically want to recover more, for he will invoke what con-
tingent rights he was holding on top of the fixed ones. And this notably
depends on his optimal exercise or conversion policy in case of no
default.

4 The missing story of default
However, this whole explanation in terms of loss and recovery in case of
default is totally missing from the T&F paper. As a matter of fact, the
problem with the T&F approach is that it falls one step short of telling
the whole story about the convertible bond under default risk. While it
certainly proposes an  actual splitting of the convertible bond into two
distinct components, and reproduces its desired extreme behaviors (pure
bond, pure equity) at the extremes of the share price range, it does not
say what actually  happens to the convertible bond in case of default. And
default can take place anywhere between those two extremes. T&F’s line
of argument is simply to identify the cash-only component (why not
through a complex procedure involving two pricing PDEs and their local
coupling), then to uncontroversially apply to it the credit spread, in the
old fixed-income logic.

A few paragraphs back, we argued that if one wishes to model the
actual default process and not just describe its phenomenological conse-
quence, the credit spread, one has to get hold of the real physical vari-
able underlying it, the hazard rate. All the more so when a pricing frame-
work, such as Black-Scholes, already imposes on us a reduction in terms
of state variables. Now it certainly makes sense to choose a credit spread
of some given finite maturity, say one year, as state variable, and develop
a stochastic model for credit quality in the same vein as the so-called
“market models” of interest rates. Furthermore, one can assume some
explicit correlation between the share process and the credit spread
process and complete the program that we have announced earlier, of
explicitly modeling the effect of the issuer’s share on his credit quality.
The T&F approach would generalize to this framework, the tree of the

cash-only component would become two-dimensional and discounting
would take place under local credit spread. However, this would still not
answer the question why the cash-only component has to be discounted
with credit spread in the first place, any better than just the postulation
that it somehow condenses the issuer’s liability and that credit spread
should mimetically apply to it.

To our eyes, a model that relies on surface resemblance and no real
explanatory argument is not a satisfactory model. Lying at the crux of
the T&F model is the proposition that the equity component and the
cash-only component are two identifiable, if hypothetical, contingent
claims, hence should follow the Black-Scholes PDE, the one with risk-free
discounting and the other with risky discounting. Now the Black-Scholes
PDE is not just a pricing black box. It relies on “physical” first principles
which are the continuous hedge and the no-arbitrage argument. The
causal explanation of the Black-Scholes PDE is the precise elaboration of
that which happens to the hedge portfolio over the infinitesimal time incre-
ment dt. On the other hand, given that the whole idea of the T&F split-
ting is to model the split behavior of the convertible bond under default
risk, then why not go all the way, and try to spell out exactly what can
happen to the convertible bond in the eventuality of default? For the con-
vertible bond is the real contingent claim after all. T&F’s progress relative
to the Goldman paper was that they took the step from probabilistically
mixing two distinct credit stories that are likely to happen to the same
instrument, to actually decomposing that instrument into two distinct
credit entities. So what we are now urging is that the credit story really
be told about those two credit entities.

5 The story of default told at last
“What can happen in case of default” is a question hinging directly on the
probability of default. It imposes the instantaneous probability of
default, rather than effects thereof such as the credit spread, as the origi-
nal cause — or true explanatory variable. The extension to the case of the
convertible bond under credit risk, not of the Black-Scholes PDE, but of
the line of reasoning underlying the Black-Scholes PDE, would then run as
follows.

Calling p the instantaneous probability of default (or the intensity of
the Poisson default process), what “infinitesimally” happens to the com-
posite portfolio, convertible bond and dynamic hedge, under default
risk is:

a) with probability 1–pdt: no default. The usual Black-Scholes contin-
uous hedge argument applies, the holdings in the underlying
share are chosen is such way that the hedge portfolio is immune to
market risk over the time increment dt, and infinitesimal P&L can
be written as (assuming no dividends for simplicity):

δ� =
(

∂V

∂ t
+ 1

2
σ 2S 2 ∂2V

∂S 2

)
dt
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b) with probability pdt: default. The infinitesimal P&L is literally
swamped by the loss of the defaultable fraction X: 

δ� = −X

The expected P&L is then expressed as follows, neglecting second
order terms: 

E (δ�) =
(

∂V

∂ t
+ 1

2
σ 2S 2 ∂2V

∂S 2
− pX

)
dt

If we now assume that the probability of default is given in the risk
neutral world2, we can equate the above expectation with the risk-free
growth of the portfolio: 

E (δ�) = r�dt

and obtain the following PDE: 

∂V

∂ t
+ 1

2
σ 2S 2 ∂2V

∂S 2
+ rS

∂V

∂S
= rV + pX (1)

6 Differences explained
Once the problem of convertible bond valuation under default risk is
framed in such a unifying formalism, the differences between all the
models that the practitioners have been using with more or less rigor
find an explanation in terms of different choices of X.

6.1 Grow risky, Discount risky

Let X be the whole portfolio, or in other words let us assume that both
the convertible bond and the underlying share drop to zero in case of
default, and the PDE will transform into: 

∂V

∂ t
+ 1

2
σ 2S 2 ∂2V

∂S 2
+ (r + p)S

∂V

∂S
= (r + p)V

This corresponds to the popular model, mnemonically known as “Grow
risky, Discount risky.”

6.2 The general model

A more general model is one in which the share drops to a residual value
(1 − η)S upon default, and the convertible bond holder is entitled to
recovering a fraction F of his investment. He would then have the option
either to convert into shares at their residual value, or to recover F. In this
case, X would be expressed as: 

X = V − max[κ(1 − η)S, F ] − ∂V

∂S
ηS

where κ is the conversion ratio, and the PDE governing the convertible
bond value under default risk would become: 

∂V

∂ t
+ 1

2
σ 2S2 ∂2V

∂S2
+ (r + pη)S

∂V

∂S
= (r + p)V − p max[κ(1 − η)S, F ] (2) 

The question remains how to model F. Should it be a fraction of the face
value N of the convertible bond? Or should it be a fraction of the market
value of the corresponding straight bond: what the practitioners call its
“investment value”? To be exact, the recovered fraction should be estab-
lished by the liquidator after default has taken place. However, we can
assume an a priori recovery rate applying uniformly to the issuer’s liabili-
ties, whatever their nature, certain or contingent. What you recover is
proportional to what you are owed.  The holder of a coupon-bearing bond
is owed more than the holder of a zero coupon bond, hence should recov-
er more. And the holder of a bond with an embedded option, say a put, is
owed more than the holder of a bullet bond, hence should recover more.
The concept of Probability, according to Ian Hacking, emerged from
those gambling situations where the players were for some reason pre-
vented from pursuing the game until the end. The game had to be settled
one way or the other, and the money at stake distributed according to
some rationale. This is how the notion of a player’s best chances of win-
ning it first made its appearance, or in other words, his expected gain.
Settling the case of default of a convertible bond issue is no different.
What the holder is supposed to recover in case of early termination due
to default is the recovery fraction of the expected value of the cash flows
he would otherwise get in case of no default.

7 Modeling the cash claim of the 
convertible bond holder
So what is it exactly that the holder of the convertible bond is owed prior
to default?

7.1 The N-model

If you say it is a fraction of the face value N, then the PDE would look
something like that: 

∂V

∂ t
+ 1

2
σ 2S 2 ∂2V

∂S 2
+ (r + pη)S

∂V

∂S
= rV + p(V − max[κ(1 − η)S, RN ])

Let us call it the N-model.

7.2 The Z-model

If you say it is a fraction of the present value of the outstanding coupons
and face value, then you would have to determine first whether this pres-
ent value should be computed under risky or risk-free yield curve. It all
depends on the interpretation of that which “the convertible bond hold-
er is owed prior to default.” Since we are in the business of building a
mathematically consistent model of the fair value of the convertible
bond and we believe, for that matter, that the market is the fairest dis-
penser of value, then a possible interpretation of “the value that the hold-
er of a convertible bond is owed prior to default” could simply be the fair
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value, or market value, of the convertible bond itself ! And this market
value would already have the default risk factored in it. Therefore a
somewhat extreme model would be one where the holder simply recov-
ers a fraction of the convertible bond value prior to default (cf. the paper
by A. Takahashi et al. 2001): 

∂V

∂ t
+ 1

2
σ 2S 2 ∂2V

∂S 2
+ (r + pη)S

∂V

∂S
= rV + p(V − RV )

The reason why this is not satisfactory is that we had assumed on the
other hand that the holder would still have the right to convert into the
residual value of the underlying share upon default, so the PDE would
really have to look like: 

∂V

∂ t
+ 1

2
σ 2S 2 ∂2V

∂S 2
+ (r + pη)S

∂V

∂S
= rV + p (V − max[κ(1 − η)S, RV ])

The recovery rate of the underlying share (1 − η) and the recovery rate
of the convertible bond R being completely independent, we would then
be faced with the possibility that κ(1 − η)S may be greater than RV, even
though κS ≤ V at all times.  Nothing would then guarantee that the
holder may not optimally elect to convert into the residual value of the
share, over and above the fact that the value he is recovering anyhow,
the recovery fraction of the convertible bond, already incorporates the
value of a conversion right! While the recovery procedure is aimed at
compensating the convertible bond investor in case of default, we cer-
tainly do not suppose that it ends up doubling his conversion rights!
Conversely, if RV is much greater than κ(1 − η)S, say R = 1 and η = 1 in
an extreme case, it would also seem strange that the holder should
recover the full convertible bond value (including the full value of the
conversion right) when the share has actually dropped to zero! To sum
up, if we are keen on leaving the holder the right to convert right at the
time of default, then the only way to avoid this conflict is to assume
that the value he is likely to recover, or in other words that which “he
was owed prior to default,” has been stripped of the conversion rights
first.

So it seems we are back to modeling F as the present value of the
underlying straight bond, and the above digression would have only con-
vinced us that the fair value of “what the holder is owed prior to default”
should take into account default risk, or in other words, that the present
value of the outstanding coupons and face value should be computed
under the risky curve. Thus we have: 

∂V

∂ t
+ 1

2
σ 2S 2 ∂2V

∂S 2
+ (r + pη)S

∂V

∂S
= rV + p(V − max[κ(1 − η)S, RZ ])

where Z, the present value of the straight bond, solves the same PDE as
the convertible bond, only without conversion rights: 

∂Z

∂ t
+ 1

2
σ 2S 2 ∂2Z

∂S 2
+ (r + pη)S

∂Z

∂S
= rZ + p(1 − R )Z

If the hazard rate were independent of S, the last PDE would integrate to: 

Z(t ) =
T∑

ti≥t

Cie
−

∫ ti

t
(r + p(1−R))du

where Ci are the outstanding cash-flows. (This is simply a forward calcu-
lation under the risky yield curve). Otherwise we would have to solve in
parallel two full PDEs, Let us call this model the Z-model.

7.3 The P-model

So far we have considered two interpretations of the notion of recovery.
These corresponded to two different interpretations of the notion of
default of the convertible bond. In one case, the convertible bond was
construed as a debt instrument, binding the issuer to redeem the princi-
pal at maturity and to pay interest in the meantime. Default in this case
meant that the structure of the convertible bond as debt instrument was
over, and that the investor had to be reimbursed the amount of money he
had initially invested. Recovery would then simply appear as a case of
early redemption, caused by default, and it would mean recovering a frac-
tion of the principal right away. In the other case, the convertible bond
was construed as a tradable asset whose fair market value represented all
the value there is to consider, and default simply meant that this value
had dropped to zero.  Recovery would then amount to recovering part of
the pre-default holdings, or in other words, a certain fixed proportion of
this value. So in the one case, default is a failure of a contractual obliga-
tion while in the other, it is simply a failure of market value. Recovery is
defined accordingly: in one case the holder is owed the principal while in
the other he is owed this market value, and the difference between the
two interpretations is further reflected in the fact that the recovered
value in the first case is purely nominal and independent of market con-
ditions, while in the other, it is itself subject to interest rates and credit
spread discounting. The two models further differ in that the N-model
does not really discriminate between the holder of a zero-coupon bond
and the holder of a coupon-bearing bond as far as recovery is concerned,
while the Z-model does. However, the two models have in common that
the holder is offered an amount of cash (RN or RZ) right after default and
right before he exercises his last option to convert, and that that is the
end of the story.

Now consider a refinement of the N-model where we wish to com-
pensate the holder of a coupon-bearing bond more than the holder of a
zero-coupon bond. What should he recover exactly? We cannot just pay
back a fraction of the sum of the face value and the outstanding
coupons because the coupons were just the reflection of the scheduling
of the issuer’s debt over time. A more appropriate model seems to be one
where the holder recovers a fraction of the present value of the outstand-
ing straight bond, where this present value is discounted under the risk-free
curve. In a sense, the occurrence of default eliminates default risk, and
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we wake up the day after in a default-free world where this present
value calculation is the only way to discriminate between the holder of
a zero coupon bond, and the holder of a coupon-bearing bond. Hence
the following PDE:

∂V

∂ t
+ 1

2
σ 2S 2 ∂2V

∂S 2
+ (r + pη)S

∂V

∂S
= rV + p

(
V − max[κ(1 − η)S, RP ]

)

where: 

P(t ) =
T∑

ti≥t

Cie
−

∫ ti

t
r(u)du

Let us call this the P -model.
Although it looks as if the P -model is just intermediate between the N-

model and the Z-model (it achieves more than the N-model in integrating
the coupons but achieves less than the Z -model in not applying full dis-
counting with the credit spread), in fact it opens a whole a new perspec-
tive for it is the first among the models we’ve considered so far to assume
that life continues after default, and to bring the post-default world into
the picture. Indeed the discounting of the recovered value under risk-free
curve, simple as it may seem, is in fact an instance of a general category
of models which we will examine later and which couple the pre-default
world and the post-default world.

8 The optimal model
For now let us just note that a common point between all the previous
model models is that none of them involved non-linearity such as allud-
ed to earlier.  The situation is somewhat akin to a free-boundary prob-
lem. In all the cases above, we imposed on the convertible bond PDE that
the recovery fraction be some value computed separately. Be it a fraction
of the face value, or of the present value of the outstanding payments,
we never let F be determined freely by the value of the convertible bond
itself. As mentioned previously, the holder of a risky bond with an
embedded option will want to argue that he was owed more prior to
default than just the present value of the fixed income part of the bond.
Having agreed to exclude the option to convert from the treatment of
recovery, this means that contingent cash-flows such as puts and calls
have ideally to be incorporated in the holder’s claim to recovery. The
problem is that their precise value will depend on whatever optimal
exercise policy the holder was supposed to follow prior to default. Just as
the free-boundary problem inherent in American option pricing trans-
lates into maximizing the value of the American option and the early
exercise boundary is itself part of the solution (see Wilmott 1998), we
feel that the fraction of the convertible bond with other embedded
options that the holder will ideally want to claim for recovery, is the
greatest such fraction subject to the constraint that it may be legally
argued, once default has taken place, that this fraction was owed to the
holder. We are implying, in other words, that our algorithm for comput-
ing the recovery fraction F should really act as a lawyer trying to opti-

mize his client’s interests, and that the real lawyers should perhaps
equip themselves with our convertible bond pricing model under
default risk, once it is completed, in order to best serve their client. And
just as the free-boundary problem is essentially non linear, we should
expect ours to be non linear.

8.1 Our proposed model: the AFV
splitting

Trying to bring together all the desiderata and the constraints that our
“philosophical” analysis of default and recovery seems so far to suggest
for the case of the convertible bond, we can summarize them as follows:

– Split the convertible bond value into two components: V = B + C.
– B is the value that the holder will argue he was owed anyway prior

to default, and consequently will claim he must recover a fraction
of according to some universal recovery rate R. Hence F = RB, in
our case.

– B will be worth at least the present value of the underlying
straight bond, for the holder will typically argue that he was owed
more than this present value in case of an embedded options such
as a put.

– B should not include the option to convert. On the contrary, the
option to convert acts “externally” to the process of recovery, for
the holder will retain the right to convert at the residual value of
the share once default and recovery have taken place.

– C would then have to incorporate this option to convert, and
would consequently finish as the holder’s last option to convert
into the residual value of the share when default takes place.

Given our general PDE for the convertible bond: 

∂V

∂ t
+ 1

2
σ 2S 2 ∂2V

∂S 2
+ (r + pη)S

∂V

∂S
= (r + p)V − p max[κ(1 − η)S, RB ]

subject to the constraints of early call and early put: 

V ≥ max(Bp, κS )

V ≤ max(Bc, κS )

(where Bp is the holder’s put strike price, and Bc the issuer’s call price,
Bc > Bp), the following coupled PDEs should in effect be solved in order to
value the convertible bond under default risk: 

∂B

∂ t
+ 1

2
σ 2S 2 ∂2B

∂S 2
+ (r + pη)S

∂B

∂S
= (r + p)B − pRB

∂C

∂ t
+ 1

2
σ 2S 2 ∂2C

∂S 2
+ (r + pη)S

∂C

∂S
= (r + p)C − p max[κ(1 − η)S − RB, 0]

with initial conditions: 

B(S, T ) = N

C(S, T ) = max(κS − N, 0)

and subject to the following algorithm (which is the cause of non-linearity):
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– If Bp > κS and the continuation value of B + C is less than Bp then
B := Bp − C

– Else if Bp ≤ κS and the continuation value of B + C is less than  κS
then C := κS − B

– If Bc < κS then C := κS − B
– Else if Bc ≥ κS and B + C is greater than Bc then C := Bc − B
– B := B+ Coupon, on coupon dates

Notice that the term that multiplies the hazard rate in the right hand
side of each PDE expresses the recovery value of each one of the two
components after default. For the bond component B, this is the usual
term, whereas for the option to convert, or equity component C, this is
the intrinsinc value of the holder’s last option to convert into the resid-
ual value of the share.

9 Interpretation of the T&F model in our
framework
We argued earlier that T&F do not provide a justification of their mathe-
matical model in terms of what happens in effect to the convertible bond
and to its components in case of default. Their splitting is just a heuristic
splitting which tries to fulfill at best the desiderata that we have listed
above, to the effect that the bond component should capture the cash-
flows, fixed and contingent, that the holder is owed, and the equity
component should capture his right to convert, etc., only it stops short of
telling the whole, consistent story of default. What we call “telling the whole,
consistent story of default” is that we be able to write PDEs for B and C
that govern their respective values prior to default by way of explicitly stat-
ing the outcome of default for these values. So it certainly would be interesting
to try to test T&F’s model against our criterion.

The general PDE that the convertible bond value solves in the T&F
model is the following: 

∂V

∂ t
+ 1

2
σ 2S2 ∂2V

∂S2
+ rS

∂V

∂S
= rV + pB

It falls in our general schema (1) with X = B, and it splits into: 

∂B

∂ t
+ 1

2
σ 2S2 ∂2B

∂S2
+ rS

∂B

∂S
= (r + p)B

∂C

∂ t
+ 1

2
σ 2S2 ∂2C

∂S2
+ rS

∂C

∂S
= rC

with initial conditions: 

B(S, T) =
∣∣∣∣ N if κS ≤ N

0 otherwise

C(S, T) =
∣∣∣∣ 0 if κS ≤ N
κS otherwise

and subject to the following algorithm:
– If Bp > κS and the continuation value of B + C is less than Bp then

B := Bp and C := 0
– Else if Bp ≤ κS and the continuation value of B + C is less than

then B := 0 and C := κS
– If Bc < κS then B := 0 and C := κS
– Else if Bc ≥ κS and B + C is greater than Bc then B := 0 and C := Bc

– B := B + Coupon, on coupon dates

Notice that T&F do not assume that the underlying share drops in the
event of default, and that they assume zero recovery.

If we were to recount the consequences of a default event on a con-
vertible bond holder, as this transpires through the T&F model, we would
have to admit that he first loses B, and second, that he carries on holding
the Black-Scholes asset C which is unaffected by default. In other words,
life continues after default in the T&F model through the subsequent
trading and hedging of the equity component C. See in comparison how
life stops in the AFV model in case of default: the holder has to make a
last optimal decision, either to exercise the right to convert at residual
value or to recover a cash amount. And notice that both the bond and equity
component are subject to default risk in the AFV model: they both undergo a
jump, the bond component to its recovery value, and the equity compo-
nent to its intrinsic value.

10 The coupling of pre-default and 
post-default worlds
Now it would certainly make sense to imagine a continuation of life after
default. A softer appellation of the state of default would be “distress
regime,” and a more general model would be one where the holder may
have to reserve until later his decision to convert at the post-default value
of the share. Indeed it may not be optimal to exercise the option either to
recover the cash value or to convert at residual value of the share, right
after default. Cases were witnessed where the conversion ratio was
revised after default. Not to mention that the volatility of the underlying
share is most likely to have dramatically changed too.  Therefore, a more
accurate description would be one where the holder ends up holding an
“ersatz-convertible bond” in case of default, with bond floor equal to RB,
underlying share spot level equal to residual value, possibly a different
conversion ratio (provided the issuer agrees to postpone the reimburse-
ment of the recovered value), all of which would have to be priced in a
new world (i.e. a new PDE), where volatility may be different, and, last but
not least, where credit risk is different. Indeed an open question is
whether the post-default world is not default-free. Could a company that
has already defaulted default once again on the recovery value of its pre-
vious debt? And if it does, wouldn’t that mean that the post-default world
itself has to be further coupled with a post-default-post-default world?

Assuming for simplicity that default happens only once, or in other
words that the distress regime is default-free, the general convertible
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bond pricing model we are contemplating may now be expressed in the
following terms: 

∂V

∂ t
+ 1

2
σ 2S 2 ∂2V

∂S 2
+ (r + pη)S

∂V

∂S
= rV + p[V − V ′(S(1 − η), t)]

with the usual convertibility, puttability, and callability constraints: 

V ≥ max(Bp, κS )

V ≤ max(Bc, κS )

and initial condition: 

V(S, T ) = max(κS, N )

(V − V ′) is the jump that the convertible bond value undergoes in the
event of default, and the jump into default is now generally seen as a case
of switching to the distress regime.

10.1 Case of no life after default 

If life ends with the default event, then V(S, t) has to assume one of the
following “stopped” solutions:

– V ′(Sτ , τ ) = max(κSτ , RN): N-model
– V ′(Sτ , τ ) = max	κSτ , RZ(Sτ − )
: Z-model
– V ′(Sτ , τ ) = max	κSτ , RB(Sτ − )
: AFV model

where τ is the time of default and Sτ = Sτ − (1 − η).

10.2 Case of life after default 

Otherwise, if V ′ is allowed to have a life after default, we may write for it
the following, default-free, PDE: 

∂V ′

∂ t
+ 1

2
σ ′2S2 ∂2V ′

∂S2
+ rS

∂V ′

∂S
= rV ′

(3)

Note that the volatility of the share in the distress regime has possibly
new value σ ′ .

Imposing the right constraints and the right initial and boundary
conditions on this PDE, will depend on the policy that the issuer wishes
to pursue after default.

10.2.1 Suppose he agrees to pay the remaining fraction of coupons
and face value at their pre-default payment dates, but grants a conver-
sion option just at the moment of default and not after, then the ersatz-
convertible bond V ′ will solve PDE (3) with

– the following initial condition: 

V ′(S, T) = RN

– the following jump-conditions on coupon dates: 

V(S, t−) = V(S, t+) + R Coupon

– and the following “time of default” constraint: 

V(S, τ ) ≥ κSτ

where τ is the time of default.
In other words, we would just have the P -model.

10.2.2 Suppose the issuer extends the conversion option and that he
maintains the original scheduling of the interest payments (to be applied
now to the recovered fraction). The ersatz-convertible bond V ′ will solve
PDE (3) with, in this case,

– the following initial condition: 

V(S, T) = max(κS, RN)

– the following jump-conditions on coupon dates: 

V ′(S, t−) = V ′(S, t+) + R Coupon

– and the following continuous constraint: 

V(S, t) ≥ κS

So really the ersatz-convertible bond will behave like a mini-convertible
bond in this case, with a new bond floor and initial underlying value
equal to the recovery value of the share S (1 − η). (We are of course ignor-
ing how the embedded put or call options would fare under the new dis-
tress regime). This model really looks like the P -model, only the option
either to convert into the recovery value of the share or to recover a frac-
tion of the outstanding straight bond has been given time value.

10.2.3 Suppose the issuer extends the conversion option but doesn’t
want to postpone the payment of the cash recovery fraction B. V ′ will now
solve PDE (3) with

– the following initial condition: 

V ′(S, T) = κS

– the following continuous constraint: 

V ′(S, t) ≥ κS

– and the following “time of default” constraint: 

V ′(S, τ ) ≥ RB(Sτ − , τ−)

where τ is the time of default, and B the risky component. This constraint
expresses the fact that the holder has to make the optimal decision, at
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the time of default, whether to accept the recovery cash value RB and
end the game, or to go on holding his option to convert in the life after
default. However, due to the martingale property of the underlying asset,
the solution of PDE (3) with boundary conditions such as described, col-
lapses to: 

V ′(S(1 − η), τ ) = max[RB(S, τ−), κS (1 − η)]

So really this case would be equivalent to the AFV model.
10.2.4 Finally, suppose that the issuer extends the conversion option

after default, only it is an option with a very strange terminal payoff and
knock-out barrier.
V ′ solves PDE (3)

– with initial condition 

V ′(S, T ) =
∣∣∣∣ 0 if κS ≤ N
κS otherwise

– and boundary condition:

V ′(S, t ) = 0 for all S and t such that it is optimal for the CB holder to
exercise the put

V ′(S, t ) = κS for all S and t such that it is optimal for the CB holder to
convert the bond

As for the fraction B that is lost on default and likely to be partially recov-
ered, it solves the following risky PDE 

∂B

∂ t
+ 1

2
σ 2S 2 ∂2B

∂S 2
+ (r + pη)S

∂B

∂S
= (r + p)B

Only suppose that it is subject to the following, no less puzzling, initial
and boundary conditions: 

B(S, T ) =
∣∣∣∣ N if κS ≤ N

0 otherwise

and B(S, t) = 0 for all S and t such that it is optimal either for the issuer
to call the bond, or for the holder to convert it.

Bringing the pieces together, the convertible bond value would be
governed by the following PDE 

∂V

∂ t
+ 1

2
σ 2S 2 ∂2V

∂S 2
+ (r + pη)S

∂V

∂S
= rV + p[V − max(RB, V ′(S(1 − η), t )]

and it would switch to the following PDE in case of default and in case
V ′(S(1 − η), τ ) > RB(S, τ ) at the time of default: 

∂V ′

∂ t
+ 1

2
σ ′2S 2 ∂2V ′

∂S 2
+ rS

∂V ′

∂S
= rV ′

where V ′ is this strange knock-out equity option.

11 Conclusion: A philosophical refutation
of T&F?
When R = 0 and η = 0 the mathematics of the last model (10.2.4)
becomes identical to T&F. They both give the same value for the convert-
ible bond and its components. All we have done really is interpret the for-
malism of T&F in our general philosophy where the actual consequences
of default are spelled out exactly. An interpretation cannot prove a theo-
ry right or wrong. It only gives us arguments to accept it, or to prefer
another theory to it. The T&F model is mathematically consistent. It pro-
duces the kind of behavior the trader expects from the convertible bond
at the extremities of the stock price range. However our general presen-
tation of the various recovery models has convinced us by now that there
is much leeway in the choice of model for B, the cash claim of the holder
in the event of default.

Much as it seemed legitimate that the cash claim, or the value recov-
ered, in the AFV model should depend on the optimal behavior of the
holder in case of no default (remember the case for the cash settlement
of interrupted gambling games), we see no reason why it should so dra-
matically depend on such a hypothetical behavior in the T&F case, as to
deny him any cash recovery claim in those regions where he would have
optimally converted. Even less so do we see the reason why the contin-
gent claim that the holder ends up holding in the life after default
should be knocked out in those regions where he would have optimally
exercised the put.

T&F would of course object that we are over-interpreting their model.
It is only when viewed in the perspective of the post-default world, that
the Black-Scholes component C and the cash claim B look so strange! For
if one were to stop at the surface, and envision the split into B and C as
just a rule for varying the weight of the credit spread in the overall dis-
counting procedure of the convertible bond value, then all that would
matter is that the credit spread be applied in the “right places”, and this
is certainly what T&F achieves! The reason why we feel uncomfortable
with this minimalist demand, however, is that we do not think we can
possibly shy away from the consequences of the default event. B is the
risky component in the T&F model; hence B is the fraction that I expect
to lose in case of default. And if I don’t lose everything then I keep some-
thing of some value, and then I have to explain why this something has
this value. The only explanation is that I can cash in immediately this
something through some action (either actual cash, or conversion on the
spot), or that this something is just the present value of something that
lives through future actions and decisions. . .
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1. The delta-weighting approach is a somewhat heuristic, probabilistic expression of the

same thing.

2. Alternatively, we can argue, with Wilmott (1998) and Merton (1976): that if the jump

component [of the asset price or the convertible bond price] is uncorrelated with the

market as a whole, then the risk in the discontinuity should not be priced into the

option. Diversifiable risk should not be rewarded. In other words, we can take expecta-

tions of this expression and set that value equal to the risk-free return from the portfolio.

This is not completely satisfactory, but is a common assumption whenever there is a risk

that cannot be fully hedged; default risk is another example of this. (Wilmott 1998, p.

330).  (Note: In this paragraph, Wilmott is in the process of deriving the option pricing

PDE in the presence of jumps in the underlying; but like he says, the reasoning applies to

default risk too).
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