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Can anyone solve
the smile problem?

volatility models were the local volatility models1. They inferred a
volatility dependent on the stock price level and time that accommo-
dates the market price of vanillas within the Black-Scholes framework
(Dupire (1994), Derman & Kani (1994), Rubinstein (1994)). Indeed, local
volatility models postulate that the underlying follows a lognormal dif-
fusion process equation

dS

S
= π(t)dt + σ (S, t) dW

1 Introduction
The smile problem has raised immense interest among practitioners
and academics. Since the market crash in October 1987, the volatilities
implied by the market prices of traded vanillas have been varying with
strike and maturity, revealing inconsistency with the Black-Scholes
(1973) model which assumes a constant volatility. Ever since, a multi-
tude of volatility smile models have been developed. The earliest of the
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One of the most debated problems in the option smile literature today is the so-called
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ing upon, however, is space homogeneity vs. inhomogeneity. Local volatility models are
inhomogeneous. The simplest stochastic volatility models are homogeneous. To be able
to control the smile dynamics in stochastic volatility models, some authors have rein-
troduced some degree of inhomogeneity, or even worse, have proposed “mixtures” of
models. We show that this is not indispensable and that spot homogeneous models can
reproduce any given smile dynamics, provided a step is taken into incomplete markets
and the true variable ruling smile dynamics is recognized. We conclude with a general
reflection on the smile problem and whether it can be solved.



2 Is the local volatility model really a
model?
2.1 The sirens of “tweaking”

When you think about it, the local volatility models just provide numer-
ical methods for finding a volatility surface σ (S, t) that fits the market
data of the options, C(K, T), by exploiting the mechanics of the pricing
equations or the PDEs. To our mind, they do not really provide a (physi-
cal) explanation of the smile phenomenon. Dupire has not discovered a
smile model. His great discovery was the forward PDE for pricing vanilla
options of different strikes and different maturities in one solve.
Tweaking the diffusion coefficient in the Black-Scholes PDE in order to
match a given set of vanilla option prices is reminiscent of the method of
“epicycles” which was the only way to account for the movement of celes-
tial bodies when the real scientific explanation was lacking. (See
Henrotte (2004) in the present issue of Wilmott Magazine for a defence of
homogeneous models against the dangers of “tweaking” and Ayache
(2001) for an early version of the argument). Local volatility models do
not intend to explain the volatility smile problem by introducing new
dynamics for the underlying stock. And by “new dynamics” we mean
something original, like jumps or stochastic volatility or default.
Suggesting that smiles are caused by jumps in the underlying or by sto-
chastic volatility (or both) not only sounds realistic and informative, but
may qualify as an explanation. Think how incredible it must sound, in
comparison, that volatility should locally rise at a given point in time
and space, then drop at some other point, for the sole purpose of match-
ing today’s option prices! It really sounds as if somebody was trying to
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yielding the following partial differential equation (PDE) for derivative
instruments:

∂V

∂ t
+ 1

2
σ 2(S, t)S2 ∂2V

∂S2
+ r(t)S

∂V

∂S
= r(t)V

They are so to speak an extension of the Black-Scholes lognormal diffu-
sion process with constant volatility to a process where the volatility is
dependent on both the share price level and time. Under these assump-
tions, the unique local volatility surface is backed out through forward
induction from the smile of vanilla option prices. Once the local
volatility surface is known, it is used to value and hedge any type of
option on the same underlying. The implied volatility of an option
with a given strike and a given maturity can be seen as an average over
all local volatilities that the underlying may have as time evolves until
the maturity date. Local volatility models accommodate the smile and
are theoretically self-consistent as it is possible to hedge, and as a mat-
ter of fact perfectly replicate options in order to price them, as done in
the Black-Scholes  framework. In other words, they retain the market
completeness.

Unfortunately, as shown in Figure 2, the shape of the local volatility
surface, inferred from the market vanilla smile represented in Figure 1
may sometimes look very surprising and unintuitive, with no easily
explainable trend either along the underlying share price direction or in
the time direction. For instance, far in the future, local volatilities are
roughly constant, i.e. the model predicts a flattening of the smile, which
seems inconsistent with the omnipresence of the skew or smile observed
for the last 15 years. Not mentioning the numerical efforts in order to
interpolate and extrapolate the sparse empirical smile data, then to
smooth the surfaces of interest. This is computationally known as an “ill-
posed inverse problem.”
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Figure 1: Implied volatility surface inferred from vanilla options
market prices. Source: S&P 500 index on October 1995 [1]

Figure 2: Local volatility surface inferred from vanilla options
market prices
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force an interpretation in terms of local volatility on a phenomenon
which has different and deeper origins. As a matter of fact, Jim Gatheral
(2003) has provided what is to our mind the right interpretation of local
volatility. He shows that local volatility is but the local expected variance
of the underlying in general stochastic volatility models (that is to say, in
“realistic” models).

2.2 The “natural” local volatility surface

Another reason why we should be suspicious of the local volatility model
and why it falls in a class of its own (which may simply be the class of
“not being a model”) is that it is non parametric in essence or else arbi-
trarily parametric. Dupire’s derivation essentially shows that any smile
surface can be fitted by local volatility provided the model is non para-
metric, and it basically provides the non parametric formula. On the
other hand, methods consisting in parameterizing the local volatility
surface a priori (through spline functions or any other convenient repre-
sentation), and in fitting the smile surface by minimization of a loss
function (Coleman, Li, Verma (1999), Jackson, Sueli, Howison (1998)), suf-
fer from the arbitrariness of the representation, particularly the arbi-
trariness of the behaviour of local volatility at the boundaries of the
domain. Proponents of such approaches are always at pains trying to jus-
tify their favourite representation of the local volatility surface on
grounds of its intuitive appeal or physical realism or what have you. It is
not uncommon that they maximize some entropy or some regularity cri-
terion while minimizing their loss function, the underlying idea being
that nature somehow favours smoothness and regularity. In a word, they
look for the “most natural local volatility function” matching the option
prices. One wonders what that means.

2.3 Arbitrage-free interpolators

Jump-diffusion and stochastic volatility models, by contrast, lend them-
selves naturally to the routine of fitting the option prices by minimiza-
tion of a loss function, as they are “naturally parameterized”  by the
coefficients of the process (for instance the intensity of jumps and the
parameters of the jump size distribution in the Merton model (1996);
the volatility of volatility, its mean reversion, its correlation with the
underlying in Heston (1993), etc.). As research on local volatility models
was getting more and more entangled in issues purely computational
(finding the smoothest arbitrage-free interpolation, maximizing the
right regularity criterion, etc. (Andersen, Brotherton-Ratcliffe (1998),
Avellaneda, Carelli, Stella (2000), Bodurtha, Jermakyan (1999), Coleman,
Li, Verma (1999), Jackson, Sueli, Howison (1998), Kahale (2003), Lagnado,
Osher (1997), Li (2001)), and was drifting farther and farther away from
the “physics” of the problem, it so happened one day that our computa-
tional expert asked our financial theorist what to his mind the “most
natural local volatility function” could be, suited for a given smile.
Undecided between many attractive numerical alternatives, our man
was seeking guidance from the underlying “physics.” Not surprisingly,

the financial theorist suggested he looked at local volatility surfaces
“such as might have been produced by models of jumps in the underly-
ing, or stochastic volatility, etc.” In other words, the suggestion was that
the best solution to the numerical problem of inferring the smoothest,
most regular, and arbitrage-free local volatility surface was to pretend
that the option prices were generated by a jump-diffusion, stochastic
volatility model! If you are so keen on local volatility, then indeed jump-
diffusion/stochastic volatility models can be sold to you as “financially
meaningful, arbitrage-free, super-interpolators.” This is just the rehears-
al of Gatheral’s point. Only the question now becomes: If you go this far,
why bother with local volatility any longer? For market completeness
perhaps?

2.4 “Local” everything?

More to the point: Why hasn’t anybody ever tried to fit a non parametric jump-
diffusion or stochastic volatility model to option data? Why is everybody
busy searching for constant (or perhaps only time-dependent) parameters in
Heston, Merton, SABR (Hagan, Kumar, Lesniewski, Woodward (2002)), and
nobody has proposed that both the diffusion coefficient and the jump coef-
ficients, or both the volatility of volatility and the correlation coefficient,
may become non parametric functions of time and space? One possible
answer is that the model would very rapidly become computationally infea-
sible. With the implication that the reason why non parametric inference is
actually done in the pure diffusion model and in no other model (or, in
other words, the reason why local volatility models simply exist) is that it
can be done. Hardly a proud conclusion. It means that local volatility models
are just a temporary diversion outside the tracks of true progress.
Another possible answer is that the continuum of vanilla call prices C(K, T)

will no longer be sufficient for calibration purposes when more than one
parameter of the pricing equation are made a function of time and space.
One would require an additional continuum of market prices, not redun-
dant with the vanillas. Why not add, for instance, the continuum of prices
of American one-touches OT(B, T) of different barrier levels and maturity
dates? As it happens, this might ensure agreement with the market prices
of barrier options, an urgent problem for all exotic options trading desks. 

We will have a lot more to say later about additional market informa-
tion that we may require in the calibration phase. Enough to observe for
the moment that the literature is not treating the showdown between
local volatility and the other smile models properly. Like we said, local
volatility is not a model, it is the tweaking of Black-Scholes. And the
tweaking could equally be applied to Heston, or Merton, or any alterna-
tive smile model, if only we had the computational guts to do so. It seems
the literature is standing at a methodological crossroads between the
tough computational decision to involve additional instruments in the
calibration—no matter the specific model or its parametric/non paramet-
ric status—and the temptation to develop specific models just for their
own sake and the sake of an original name, then to go check whether
they predict the right exotic option prices, or the right smile dynamics.
At any rate, it is unfortunate that external issues, such as tractability,
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solvability, elegance of formulation, etc., should be the ultimate guides
of scientific research. We motivate our paper by situating it precisely at
this crossroads.

As a matter of fact, an attempt could be made at the calibration of a
jump-diffusion model with local diffusion component and local jump
intensity. Indeed, a natural extension of the Black-Scholes diffusion
model in the equity world is to include the risk of default in the pricing
problem of equity derivatives subject to credit risk, like convertible
bonds. This introduces the hazard rate function λ(S, t) in the usual par-
tial differential equation:

∂V

∂ t
+ 1

2
σ 2(S, t)S2 ∂2V

∂S2
+ (r(t) + λ(S, t)) S

∂V

∂S
= r(t)V + λ(S, t)X

where X is the loss given default, and means we would have to calibrate
the hazard rate function, on top of the volatility function, to available
market data. The obvious candidates are the continuum of vanilla option
prices C(K, T) and the continuum of credit default swap spreads as a func-
tion of present stock price and maturity CDS(S, T). See Andersen, Buffum
(2002) for an example of such joint calibration. Note, however, that
Andersen’s procedure is parametric in that he proposes simple paramet-
ric representations of σ (S, t) and λ(S, t).But nothing stops us, in theory,
from extending the forward induction argument of Dupire, or the
Fokker-Planck equation approach of Klopfer and Tavella (2001), to the
case where the probability density diffuses under the Brownian compo-
nent as usual and “leaks” into the state of default through the Poisson
intensity of the default jump process, and from inferring σ (S, t) and
λ(S, t) non parametrically.

2.5 The mirage of the vanillas

The conclusion we draw from our first bash at local volatility models is
twofold. First, local volatility is not a model. It is the “corruption” of a
model2 and the corruption, for that matter, can spread over to all the
other models. At best, local volatility can be seen as a shorthand or an
interpretation: it is the local expected variance of some deeper and more
realistic dynamics. (Think of Ehrenfest’s theorem which interprets the
classical mechanical variables as expectations of the “true” quantum
mechanical observables). Second, when thinking about the other models
(jump-diffusion, stochastic volatility, etc.), one should keep in mind that
they can be made “local” too. For once one recognizes that vanilla option
prices will not be sufficient for calibration in that case, one realizes that
there is nothing special about the vanillas anyway. The only reason why
authors of jump-diffusion, stochastic volatility, or universal volatility
models insist on fitting them to the vanillas is that they followed in the
steps of the local volatility approach and vanillas were the obvious cali-
bration candidates there.

We also fear the real reason might be that vanillas alone admit of
analytical solutions in the models they propose, or even worse, that they
have precisely grabbed the models which offered analytical solutions for
the vanillas to begin with. We would love to see some of these authors

calibrate their jump-diffusion, stochastic and universal volatility mod-
els, to a handful of options of significantly different payoff structures: vanillas,
barriers, cliquets, credit default swaps, etc. As a matter of fact, vanilla
options can be the poorest candidate for encapsulating the information
about the stochastic process, when processes more general than a diffu-
sion are considered. That our problem is called the “smile problem” is
no reason why the calibration of the model, or even its whole intention,
should revolve around the vanillas. And that vanilla option trading is
the ancestor of exotic option trading, or that traders are accustomed to
envision alternative stochastic processes in terms of the vanilla smiles
they generate, is an even worse excuse. But again, SABR would not be
SABR if it did not allow the expansion of the Black-Scholes implied
volatility (in other words the vanilla smile) in terms of the parameters of
the process, and Heston would not be Heston, or Hull and White (1988)
Hull and White, if . . .

3 Formulation of the smile problem
3.1 The real smile problem
Not only can we argue, on a priori grounds or from a purely methodological point
of view, that the local volatility model is not a model, but it also demon-
strably fails as a model of option smiles. Indeed the real smile problem is
not how to fit the vanillas or how to price them! Straightforward spline
interpolation does that very nicely. The real smile problem is the pricing
of exotic options and more generally the hedging of all kinds of options,
including the vanillas, under dynamic assumptions at variance with the
Black-Scholes model. As noted by almost everybody, the local volatility
model fails miserably on both counts. Both the barrier option price struc-
ture and the dynamic behaviour of the smile predicted by a vanilla-cali-
brated local volatility model diverge from empirical observation (Lipton,
McGhee (2002), Hagan, Kumar. Lesniewski, Woodward (2002)). “The fail-
ure of the local volatility model, writes Hagan, means that we cannot use
a Markovian model based on a single Brownian motion to manage our
smile risk.” We need to assume an independent process for volatility. This
opens the door to stochastic volatility models, and more generally, to all
kinds of alternative dynamics that have been proposed over time as a
replacement of Black-Scholes.

Perhaps the most important aspect of the smile problem today is to
find a way of discriminating between all the alternative proposals to
solve it. This is the symptom of a science in crisis, not just the symptom of
a problem. Definitely the accurate pricing of exotics and the soundness
of the hedging strategy are good selection criteria. To put it in Lipton’s
words (2002):

“We describe a series of increasingly complex models that can be used to
price and hedge vanilla options consistently with the market. We emphasize
that, although all these models can be successfully calibrated to the market,
they produce very different hedging strategies. [. . .] A number of models
have been proposed in the literature: the local volatility models of Dupire
(1994), Derman & Kani (1994) and Rubinstein (1994); a jump-diffusion model
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of Merton (1976); stochastic volatility models of Hull and White (1988),
Heston (1993) and others; mixed stochastic jump-diffusion models of Bates
(1996) and others; universal volatility models of Dupire (1996), JP Morgan
(1999), Lipton & McGhee (2001), Britten-Jones & Neuberger (2000), Blacher
(2001) and others; regime switching models, etc. [. . .] Too often, these mod-
els are chosen ad hoc, for instance, on the grounds of their tractability and
solvability. However, the right criterion, as advocated by a number of practi-
tioners and academics, is to choose a model that produces hedging strategies
for both vanilla and exotic options resulting in profit and loss distributions
that are sharply peaked at zero.”

This is the most cogent formulation of the smile problem we know of.

3.2 Indeterminateness of the conditionals

We shall quickly review the smile models which are most representative
of today’s smile literature, but let us first investigate the reason why
smile models of different stochastic structure may not agree on exotic
option pricing or the option hedging strategies (a.k.a. “smile dynamics”)
even when calibrated to the same vanilla smile. The picture becomes
clear when we have a look at the way the calibration is carried out.
Denoting Ai,j

i0 ,j0
the price at state i0 and time j0 of a security paying off $1

at state i and future time j (a.k.a. Arrow-Debreu security), it can be related
to the vanilla call option prices in the following way:

Ai,j
i0 ,j0

= C(Ki+1, Tj) − 2C(Ki, Tj) + C(Ki−1, Tj)


K2
(1)

In continuous time and space this is expressed by

p(S, t; K, T)e
−

T∫
t

r(s)ds

= ∂2C(S, t; K, T)

∂K2

where p(S, t; K, T) is the transition probability density from initial state
and time (S, t) to (K, T). Introducing the vector notation:

Aj
i0 ,j0

=




A1,j
i0 ,j0

A2,j
i0 ,j0

...

AN,j
i0 ,j0




(2)

and the matrix notation:

Aj+1
j =




A1 ,j+1
1,j A2,j+1

1,j · · · AN,j+1
1,j

A1,j+1
2,j A2,j+1

2,j AN,j+1
2,j

...
...

. . .
...

A1,j+1
N,j A2,j+1

N,j · · · AN,j+1
N,j


 (3)

Up to a discounting factor, this is the matrix of conditional transition prob-
abilities from states at date j to states at date j + 1. (Crucially, the assump-
tion here is that states of the world are just states of the underlying).

The conditional probability rule yields the following equation:(
Aj+1

i0 ,j0

)T =
(

Aj
i0 ,j0

)T
Aj+1

j (4)

Without any further information about the structure of the stochastic
process, this is the only constraint that the prices of vanilla options today
impose on the matrix of conditional probabilities. Infinitely many matri-
ces solve that equation of course. In a continuous diffusion framework
this forward equation becomes

∂p

∂T
+ ∂(rKp)

∂K
− 1

2

∂2(σ 2K2p)

∂K2
= 0 (5)

and shows why the knowledge of the prices of Arrow-Debreu securities
maps the diffusion process σ (K, T) completely.

3.3 Smile dynamics and model-dependence

To repeat, the only information contained in the set of vanilla option
prices C(K, T) of different strikes and different maturities, independently
of any model, is the map of transition probabilities from present day and
present spot to whatever future time and future spot we are looking at.
This says nothing about the conditional transition probabilities from a
future date to a farther future date. Additional information is needed to
help determine those conditionals. In theory, we would need the knowl-
edge of all “forward smiles,” in other words, the future prices of all vanil-
la options as seen from all possible states of the world, not mentioning that
the underlying stock price may not be the only state variable (in stochastic volatili-
ty models, typically).

Choosing a particular model for the underlying dynamics definitely
adds some structure. It is a form of parametrization of this totally non
parametric picture. The only “structure” that the local volatility model
adds consists in removing the need for market information beyond the
vanilla option prices in the fully non parametric case. The “matrix” of
conditionals is fully determined in that case, and there is no spatial
state variable other than the underlying. Alternative models such as
jump-diffusion, or stochastic volatility, or universal volatility models,
also dramatically reduce the degrees of freedom in the choice of the con-
ditionals, particularly so when the coefficients of the given process are
constant, or time-dependent, or assume some parametric form. Now
think how different the structure of conditionals that they imply can
be, compared to the pure diffusion case (e.g. the possibility of jumping
and hitting a barrier in between future dates, the addition of another
state variable indexing the forward smiles, etc.), yet their authors cali-
brate them to the vanillas just the same! In a sense, the local volatility
model is more honest than the other models with regard to the condi-
tionals. You just know there is nothing you can do. In the other models,
by contrast, you calibrate a bunch of constant parameters in what seems to
be a legitimate calibration move—typically you calibrate them to the
vanillas—and this sets for you all the conditional structure. Hardly can a
result be more model-dependent!
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3.4 Our preferred model

The reason why the local volatility model, the jump-diffusion models,
the stochastic volatility models, or more generally the “universal volatili-
ty models,” may agree or not agree among each other or with the market
on the prices of barrier options or forward starting options, is that each
model imposes a specific smile dynamics, or structure of conditionals.
We claim that this smile dynamics should not be imposed by the model,
but inferred from the market. However, we have to pick a certain frame-
work.

Calibration, pricing and dynamic hedging cannot be totally model-
independent, even though model-independence should always act as a
“regulative ideal” in our research program. We shall pick the framework
with the features that everybody knows today are essential for explaining
the smiles. We know we need jumps (if only to account for shorter dated
smiles and default risk) and we know we need stochastic volatility (to
account for longer dated smiles and to acknowledge the very raison d’être
of option markets and market-makers). Our discussion of local volatility
and Henrotte’s powerful statement3 should steer us away from inhomo-
geneous models. The coefficients of our stochastic process shall be con-
stant. However, we have learnt from the unhappy story of the condition-
als that market option data, other than the vanillas, must be included in
the calibration procedure. Under no circumstance shall we be prevented
from doing so by what Henrotte describes, in other people’s cases, as “a
very somber agenda”: the need to produce closed form or quasi closed
form pricing solutions. Our pricing equations shall be solved by numeri-
cal algorithms. For all these reasons, chiefly the fact that model names
have traditionally been associated with the discovery of analytical solu-
tions, our model shall bear no particular name. We shall call it “Nobody’s
model.”

3.5 Including exotics in the calibration

On the calibration side, we have noted that the value of barrier options is
sensitive to the flux of probability across the barrier (jumps, and volatili-
ty dynamics up to the barrier). The value of forward starting options, on
the other hand, is directly linked to the conditional transition probabili-
ties, or forward smiles. In other words, both depend on what extra struc-
ture the matrix of conditional transition probabilities may have, on top
of the constraint given by the spot vanilla smile. This designates simple
barrier options like the one-touch or American digital, and the forward
starting options as the natural candidates for extending our calibration
set and helping determine the smile dynamics4. Traders accustomed to
Derman’s (1999) classification of smile dynamics in terms of “sticky-
strike” or “sticky-delta volatility regimes” know that the delta of the
vanillas is very much dependent on the type of volatility regime the mar-
ket is in. Derman’s study produces evidence that both kinds of regimes
have obtained over time within a single market. Depending on the
regime you think the market is in, you make the following adjustment to
your Black-Scholes hedge.

When σimp (S, t, K, T) is the implied volatility for a European style option
we have :

C (S, t, K, T) = CBS

(
S, t, K, T, σimp (S, t, K, T)

)
(6)

The delta-hedge becomes a combination of Black-Scholes delta and a cor-
rection term due to the regime of movement of the smile with a moving
underlying:


 = ∂C

∂S
= ∂CBS

∂S
+ ∂CBS

∂σimp
· ∂σimp

∂S
(7)

We claim that nobody should be in a position to decide which particular
smile dynamics will prevail. It is really like guessing a price (as Marco
Avellaneda once rightly observed in a financial workshop at NYU). Only
the market can provide such information. We are saying that your wrong
guess about the smile dynamics can generate an immediate arbitrage opportunity
against you, if somebody picks the right security to trade against you. As a matter of
fact, all FX option traders are aware of the existence of such a security! It
is the barrier option, the simplest instance of which is the one-touch.

Different projected evolutions of the vanilla smile lead to different
spot prices of barrier options in the FX traders’ minds, because they
think of the future cost of unwinding the vanilla static hedge that they
have set up against the barrier option. This insight can be further refined
and made rigorous in a fully dynamic hedging picture. (Indeed the vanil-
la static hedge that those FX exotic option traders have in mind is not
always consistent with the smile dynamics they project. For instance
they immunize the vega, the vanna and the volga of the barrier option
with a static combination of vanillas, yet they derive their hedging ratios
from the Black-Scholes model wich assumes constant volatility5).

The price structure of the one-touches contains implicit information
about the smile dynamics, therefore about the delta you should be using
to hedge the vanilla options! So does the price structure of the forward
starting options. This is why the one-touches and the forward starting
options must be included in the calibration.

In conclusion, the exotic option pricing problem and the problem of
smile dynamics are intimately linked, and the pricing/hedging model can-
not dispense with including exotic options in the calibration.

4 A quick review of representative smile
models
4.1 Stochastic volatility

In stochastic volatility models (Heston (1993), Hull & White (1998)),
volatility is itself stochastic and follows some mean reverting process
with its own volatility and correlation with the underlying share. The sto-
chastic volatility models can be seen as modelling the option price as an
average of the Black-Scholes prices with respect to volatility. This model is
essential for the pricing of longer-dated options which are most sensitive
to volatility changes. It avoids the scale effect observed in long-term local
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volatilities. Least square fit is used to search for model parameters to
match observed market prices.

The problem with stochastic volatility models is that the derivative
instrument is exposed to volatility risk on top of market risk, and the
underlying cannot hedge both Brownian motions.

The Heston model is, for instance, given by the following risk-neutral
process:

dS

S
= rdt + √

vdW

dv = κ (θ − v) dt + ε
√

vdZ

where the volatility process and the underlying process are correlated
through a correlation coefficient ρ . And the pricing equation is given by: 

∂V

∂ t
+ 1

2
v

(
S2 ∂2V

∂S2
+ 2ρεS

∂2V

∂S∂v
+ ε2 ∂2V

∂v2

)
+ rS

∂V

∂S
+ κ (θ − v)

∂V

∂v
= rV

The calibration of the model consists in finding parameters of the
volatility process: κ (mean reversion), θ (long term volatility), ε (volatility
of volatility), ρ (correlation between the volatility process and the under-
lying process) as well as initial volatility state v0, such that option market
data is fitted.

4.2 Jump-diffusion

Jump-diffusion models (Merton (1996)) add jumps and crashes to the
standard diffusion process of the underlying. They intend to reproduce
the underlying dynamics more realistically and to capture the strong
smile exhibited by short-dated options. The underlying share price fol-
lows a risk-neutral process governed by the following equation:

dS

S
= (r − λm) dt + σ dW + (

e j − 1
)

dN

where N is a Poisson process with frequency λ, W is a wiener process
independent of N, j is a random logarithmic jump size with pdf φ( j) and
m is the expected value of ej − 1.

The problem again is that the Black-Scholes continuous hedging argu-
ment breaks down in the presence of jumps.

Some other models lay jumps on top of stochastic volatility models
(Bates (1996)).

4.3 Universal volatility

4.3.1 Blacher

The universal volatility model of Blacher is described by the following
risk-neutral process: 

dS

S
= rdt + σ

(
1 + α(S − S0) + β(S − S0)

2
)

dW

dσ = κ (θ − σ ) dt + εσdZ

The volatility σ follows a mean reverting process to level θ , correlated
with the underlying process via ρ . 

It is worthy of note that Blacher motivates his universal volatility
model for reasons almost opposite Hagan, et al (2002). Like Hagan, he
speaks for stochastic volatility models. However, he notes that although
the “smile is stochastic, simple stochastic volatility models [such as
Heston’s] do not predict a systematic move of the relative smile when the
spot changes.” “Not what we observe in the market,” he says. “This means
hedging discrepancies, starting with a wrong delta.” In other words,
Blacher is noting that space homogeneous models like Heston’s follow
the sticky-delta rule. The “relative smile” they imply, i.e. the smile with
respect to moneyness or delta of the option, is unchanged when the
underlying spot changes. Yet Blacher wishes that the vanilla smile may
not always move coincidentally with the underlying. He claims control
over the smile dynamics. In order to achieve this, he has no choice but to
re-introduce inhomogeneity in the spot homogeneous stochastic model.

He writes: “α, the slope of the deterministic part, creates skew and
governs the change of ATM implied vol with respect to change of under-
lying. β , the curvature of the deterministic part, creates smile curvature
and governs the change of the slope of the smile curve with respect to
change of underlying.”

Note that SABR also breaks the homogeneity of degree 1 by allowing
values for β different from 1, in the risk-neutral process: 

dF = αFβ dW1

dα = vαdW2

F is the forward price, α its volatility, v the volatility of volatility, and dW1

and dW2 are Wiener processes correlated through:

〈dW1, dW2〉 = ρ · dt

4.3.2 Lipton

Lipton (2002), on the other hand, argues for his universal volatility model
on grounds of its adequacy for pricing barrier options. He writes:

“A properly calibrated universal model matches the market [of barrier
options] much closer than either local or stochastic volatility models,
which tend to sandwich the market. [. . .] While both local and stochas-
tic volatility models produce price corrections [for barrier options] in
qualitative agreement with the market, only a universal volatility
model is capable of matching the market properly. In our experience,
this conclusion is valid for almost all path-dependent options.”

By “properly calibrated universal model” Lipton means “calibrated to the
vanillas.” On the specific topic of calibration he otherwise notes:
“Because of its complexity, the universal volatility model can be solved
explicitly only in exceptional cases (which are of limited practical inter-
est). [. . .] The model calibration, of course, is a different matter.”
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Lipton’s risk-neutral stochastic process is given by:

dS

S
= (r − λm)dt + √

vσL(t, S)dW + (
e j − 1

)
dN

dv = κ (θ − v) dt + ε
√

vdZ

And the pricing equation is given by:

∂V

∂ t
+ 1

2
v

(
σ 2

L (t, S)S2 ∂2V

∂S2
+ 2ρεσ 2

L (t, S)S
∂2V

∂S∂v
+ ε2 ∂2V

∂v2

)

+ (r − λm)S
∂V

∂S
+ κ (θ − v)

∂V

∂v
+ λ

+∞∫
−∞

V
(
ejS

)
φ( j)dj = (r + λ)V

where σL(t, S) is the local volatility part, κ the mean reversion of volatili-
ty, θ the long term volatility, ε the volatility of volatility, ρ the correlation
between the volatility process and the underlying process, λ the intensity
of the Poisson jump process, j > 0 the random logarithmic jump size
with PDF φ( j)), and m the expected value of ej − 1.

4.4 Conclusion
In conclusion of our review of existing smile models, let us retain the
following fact. The local volatility model and the stochastic volatility
model stand at opposite extremes. The first is inhomogeneous, the sec-
ond is homogeneous. Neither one predicts the right smile dynamics or
produces the right barrier options prices. Only the universal volatility
model, which allows explicit control over the smile dynamics (by re-
introducing inhomogeneity and by mixing local volatility behaviour
with stochastic volatility behaviour), manages to fit the smile dynamics
(Blacher) and at the same time to fit the barrier option prices (Lipton,
McGhee (2002)).

Let us then solemnly pose the question: “Is the recourse to inhomogeneity
really indispensable?” Or again: “Given our plea for inclusion of the exotics in the
calibration and our credo in homogeneous models, can we also claim control over
the smile dynamics?”

5 Numerical illustrations of the smile
problem
We will try to answer that big question by way of practical examples
rather than fundamental theorizing. The examples will also serve the
purpose of illustrating the smile problem, namely that models of differ-
ent stochastic structure may very well agree on the vanilla smile yet
completely disagree on the exotics and smile dynamics. Instead of solv-
ing Heston’s model, or Dupire’s model, or Lipton’s model, we will build
up our series of examples from a simple instance of the “model with no
name,” the model we have called “Nobody’s model.”

5.1 The calibration issue

5.1.1 Baby examples

First, we consider a simple jump-diffusion model where the underlying
diffuses with a constant Brownian volatility and may incur two jumps of
fixed size and constant Poisson intensity. We call this simple stochastic
structure “Baby1.”

For illustration, we consider a Brownian volatility component of
v = 7%, an upward jump of size y1 = 10% and intensity λ1 = 0.40 and a
downward jump of size y2 = −25% and intensity λ2 = 0.2. Table 1 sum-
marizes the parameters of Baby1.

The probabilities of jump are given in the risk-neutral measure.
Consequently, we can compute the vanilla option prices generated by
this process and re-express them in Black-Scholes implied volatility num-
bers (see Table2), thus producing the smile. The interest rate is r = 2%
and the underlying spot is S = 100.

Note that the smile is steepest for shorter dated options, and tends to
flatten out for longer terms (see Figure 3). We can see this simple model
as a discretization of the “traditional” jump-diffusion models (e.g.
Merton) with a probability distribution of jump sizes.

Volatility smiles can alternatively be represented as a function of the
option delta and maturity rather than its strike and maturity . This is
the origin of the appellation “sticky-strike” and “sticky-delta.” Smiles
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TABLE 1: BABY1 PARAMETERS
Brownian Diffusion 7.00% 

Jump size Jump intensity

−25% 0.2 

10% 0.4

TABLE 2: VOLATILITY NUMBERS IMPLIED BY
BABY1

Strike Maturity (years) 0.16 0.49 1
80 30.67% 22.20% 18.97%

85 27.41% 20.97% 18.33%

90 22.12% 18.47% 17.19%

95 15.47% 15.32% 15.70%

100 10.90% 12.96% 14.32%

105 11.69% 12.12% 13.37%

110 13.67% 12.16% 12.83%

115 14.48% 12.42% 12.58%

120 15.79% 12.73% 12.49%

130 17.37% 13.44% 12.56%

140 18.74% 14.08% 12.77%
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that are a function of the moneyness of the option are sticky-delta.
Their representation in the delta/maturity metric is invariant when the
underlying moves. Figure 4 shows the alternative graph of our smile in
that metric.

We re-compute our smile for S = 120 (Figure 5). As our jump-diffusion
model is homogeneous and volatility and jump sizes relate to propor-
tional changes of the underlying, the resulting smile surface is sticky-
delta. It is unchanged in the delta/maturity metric, and it moves along
with the underlying in the strike/maturity metric.

Next, we consider another simple stochastic structure that we call
“Baby2.” The volatility of the Brownian component is now stochastic
and can assume two states, or regimes. The transitions, or jumps,
between the two volatility states are caused by Poisson processes of con-
stant intensity. At least two Poisson processes are needed to secure the
transition from Regime 1 to Regime 2 and back. As Brownian volatility
jumps between regimes, the underlying may simultaneously incur a
jump of fixed size. This builds in correlation between jumps in the
underlying (or return jumps) and volatility jumps. By convention,
Regime 1 is the present regime. You can think of Baby2 as a simplifica-
tion of stochastic volatility models with correlated return jumps and
volatility jumps.

We then propose the following. We shall use Baby2 to try to fit the
vanilla smile generated by Baby1. Note that Baby1 admits of five free
parameters (the Brownian diffusion coefficient, the two jump sizes and
the two jump intensities) and Baby2 of six (the diffusion coefficients in
the two regimes, the two inter-regime jump sizes and the two jump
intensities). 
Calibration of Baby2 is achieved by searching for the six parameters by
least squares fitting of the option prices produced by Baby1. The calibra-
tion results are shown in Figures 6 and 7 and the set of parameters is
summarized in Table 3. Then we see how Baby1 and Baby2 price a given
barrier option.

Figure 3: Volatility smile generated by Baby1 against strike price
for three different expirations and underlying spot price of 100

Figure 4: Volatility smile generated by Baby1 against delta for three
different expirations and underlying spot price of 100

Figure 5: Smile produced by Baby1 against strike price for three
different expirations and underlying spot price of 120
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As seen in Table 4 and Table 5, Baby 1 and Baby 2 seem to be in agree-
ment on the prices of the vanilla options and yet in disagreement on the
price of the call 100 up & out at 107. You may think the discrepancy
between the barrier option prices is due to the fact that Baby2 has not
exactly matched the vanilla smile generated by Baby1. Indeed, Baby2 is
structurally different from Baby1 in that it can only pick up a single
return jump, when it starts in Regime 1. This jump takes it to Regime 2,
and it is only then that it may incur a jump of a different nature. Notice
how Baby2 has managed to decipher Baby1’s downward jump (it finds a
jump of size −28% and intensity 0.14 to account for the jump of size
−25% and intensity 0.20), and how it has fudged Baby1’s 7% Brownian
and upward jump into a Brownian component of 10.02%.

However, total volatility in Regime 1 of Baby2 is very close to total
volatility6 in Baby1 (see Table 6). As a result, Baby2 performs better at fit-
ting the out-of-the-money put skew of Baby1 than the out-of-the-money call
skew. Still, it may look surprising that the difference between the barrier
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Figure 6: Comparison of the implied volatility curves of Baby2 and
Baby1 for 0.16 year maturity

Figure 7: Comparison of the implied volatility curves of Baby2 and
Baby1 for a maturity of 1 year

TABLE 4. COMPARISON OF THE PRICES GENERATED
BY BABY1 AND BABY2 FOR DIFFERENT 6-MONTH-
MATURITY OPTIONS

Call 100 Call 107 Put 93
Baby1 Price 4.12 1.28 1.58

Implied volatility 12.96 % 12.07% 16.58%

Baby2 Price 4.22 1.25 1.51

Implied volatility 13.31% 11.93% 16.24%

TABLE 3: BABY2 PARAMETERS WHICH
BEST FIT THE VANILLA SMILE GENERATED
BY BABY1 (TABLE2)

Brownian Diffusion 
Regime 1 10.02%

Regime 2 8.44%

Jump size Jump intensity
Regime 1→Regime 2 -28.07% 0.1395

Regime 2→Regime 1 0.24% 0.3947

TABLE 5. CALL 100 UP & OUT AT
107, OF MATURITY SIX MONTHS
PRICED BY BABY1 AND BABY2

Price
Baby1 0.74

Baby2 0.49

TABLE 6. TOTAL VOLATILITY
IN THE REGIMES OF BABY1
AND BABY2

Total volatility
Baby1 1 14.63%

Baby2 Regime1 14.50%

Regime 2 8.44%
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option prices produced by the two models should be so big, especially
so when the prices of the calls of strike 100 and 107 are not that different.

5.1.2 Body examples
To clear any remaining doubt, we move to the next stage and consider
a more evolved model. The underlying can now find itself in three dif-
ferent regimes of Brownian volatility. Transition between the regimes
is still carried out by a Markovian matrix of six inter-regime Poisson
jumps. The model now involves 15 free parameters (three Brownian

diffusion coefficients, six jump sizes and six jump intensities). We call
this new stochastic structure “Body.”

Baby1 and Baby2 now appear as special cases of Body. Baby2 corre-
sponds to Body with the transitions to Regime 3 disabled. And Baby1 cor-
responds to Body with the three diffusion coefficients set equal to 7%
and the two Poisson jumps from any of the three regimes to any other set
equal to Baby1’s Poisson jumps.

We then propose the following. We shall calibrate Body twice to a full
vanilla smile, each time with a different initial guess on the 15 process

TABLE 7: COMPARISON OF THE IMPLIED VOLATILITY SURFACES GENERATED BY BODY1 AND BODY2
WITH THE ONE INFERRED FROM VANILLA MARKET PRICES. THE SPOT PRICE IS 100.

Strike
Maturity(years) 80 85 90 95 100 105 110 115 120 130 140

Market 19.00% 16.80% 13.30% 11.30% 10.20% 9.70%

0.18 Body1 19.22% 16.38% 13.35% 11.69% 10.38% 10.29%

Body2 19.11% 17.14% 13.91% 10.93% 10.76% 10.00%

Market 17.70% 15.50% 13.80% 12.50% 10.90% 10.30% 10.00% 11.40%

0.43 Body1 17.56% 15.85% 13.97% 12.43% 11.14% 10.08% 10.07% 11.53%

Body2 17.49% 15.89% 14.11% 12.22% 11.29% 10.35% 9.82% 10.30%

Market 17.20% 15.70% 14.40% 13.30% 11.80% 10.40% 10.00% 10.10%

0.70 Body1 17.34% 15.90% 14.37% 13.00% 11.85% 10.87% 10.11% 10.20%

Body2 17.15% 15.86% 14.50% 12.96% 11.91% 10.95% 10.36% 10.37%

Market 17.10% 15.90% 14.90% 13.70% 12.70% 11.30% 10.60% 10.30% 10.00%

0.94 Body1 17.22% 15.93% 14.60% 13.39% 12.36% 11.47% 10.69% 10.23% 11.04%

Body2 17.05% 15.94% 14.77% 13.42% 12.39% 11.44% 10.81% 10.64% 10.74

Market 17.10% 15.90% 15.00% 13.80% 12.80% 11.50% 10.70% 10.30% 9.90%

1.00 Body1 17.19% 15.93% 14.65% 13.48% 12.46% 11.60% 10.83% 10.32% 10.86%

Body2 17.04% 15.96% 14.82% 13.52% 12.50% 11.55% 10.91% 10.71% 10.74

Market 16.90% 16.00% 15.10% 14.20% 13.30% 12.40% 11.90% 11.30% 10.70% 10.20%

1.50 Body1 16.99% 15.98% 14.97% 14.03% 13.19% 12.46% 11.80% 11.24% 10.56% 10.89%

Body2 16.95% 16.08% 15.17% 14.13% 13.24% 12.38% 11.71% 11.34% 10.96% 10.96%

Market 16.90% 16.10% 15.30% 14.50% 13.70% 13.00% 12.60% 11.90% 11.50% 11.10%

2.00 Body1 16.87% 16.03% 15.20% 14.42% 13.71% 13.07% 12.48% 11.98% 11.17% 10.76%

Body2 16.86% 16.13% 15.38% 14.53% 13.78% 13.02% 12.38% 11.94% 11.35% 11.11%

Market 16.80% 16.10% 15.50% 14.90% 14.30% 13.70% 13.30% 12.80% 12.40% 12.30%

3.00 Body1 16.74% 16.12% 15.52% 14.94% 14.40% 13.89% 13.42% 12.99% 12.26% 11.67%

Body2 16.70% 16.16% 15.61% 15.02% 14.47% 13.90% 13.37% 12.93% 12.21 11.73%

Market 16.80% 16.20% 15.70% 15.20% 14.80% 14.30% 13.90% 13.50% 13.00% 12.80%

4.00 Body1 16.68% 16.19% 15.72% 15.26% 14.83% 14.42% 14.03% 13.67% 13.03% 12.48%

Body2 16.58% 16.15% 15.74% 15.29% 14.87% 14.44% 14.01% 13.64% 12.96% 12.41%

Market 16.80% 16.40% 15.90% 15.40% 15.10% 14.80% 14.40% 14.00% 13.60% 13.20%

5.00 Body1 16.63% 16.24% 15.85% 15.48% 15.12% 14.78% 14.45% 14.14% 13.58% 13.09%

Body2 16.49% 16.14% 15.81% 15.45% 15.12% 14.78% 14.44% 14.13% 13.53% 13.01%
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parameters. And we shall pick a real vanilla smile this time (the one in
Figure 1 that gave us the local volatility surface in the first section), not
an artificially created one. Then we shall turn to the pricing of barrier
options. The results of calibration are shown in Table 7 and the corre-
sponding sets of parameters are shown in Tables 8 and 9.

Notice that two calibration instances, Body1 and Body2, match the
given market vanilla smile fairly closely (see Table 7 and Figures 8, 9 and,
10). Also note that we manage to fit a whole surface of options prices, with
different strikes and different tenors, with one set of constant parame-
ters, when other smile models typically require that the parameters
become functions of time.7 True, the reason for that may be that our
parameters are many (15) and our “Body” model not so parsimonious
after all. This also explains why the calibration procedure may produce
multiple solutions and the loss function admit of several local minima.
As far as barrier options are concerned, we first look at the one-touches.
In market practice, one-touches are identified and quoted relative to
Black-scholes. The “30% one-touch” conventionally refers to the American

digital option, paying out $1 as soon as the barrier is hit from below, that
would be worth 30 cents in the Black-Scholes world, when priced with the ATM
implied volatility of corresponding maturity. (“−30% one-touch” conven-
tionally means that the barrier is hit from above). A market quote of
−4.88% for that one-touch means that it is actually worth
(30% − 4.88%) = 25.12% in the present market, or smile, conditions.

Table 10 describes the one-touch price structures given by Body1 and
Body2. The differences are considerable. As a result, standard barrier
options will also be priced very differently by the two models (see Table
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TABLE 8. BODY1 PARAMETERS

Brownian diffusion Total volatility
Regime 1 9.57% 11.67%

Regime 2 6.24% 32.23%

Regime 3 2.25% 11.88%

Jump size Jump intensity
Regime 1 → Regime 2 −9.07% 0.2370

Regime 2 → Regime 1 62.67% 0.0855

Regime 1 → Regime 3 2.72% 3.3951

Regime 3 → Regime 1 −3.17% 2.9777

Regime 2 → Regime 3 24.63% 1.0944

Regime 3 → Regime 2 −22.66% 0.2040

TABLE 9. BODY2 PARAMETERS

Brownian diffusion Total volatility
Regime 1 7.77% 11.63%

Regime 2 19.11% 25.08%

Regime 3 3.98% 7.45%

Jump size Jump intensity
Regime 1 → Regime 2 −9.02% 0.6254

Regime 2 → Regime 1 15.85% 0.5124

Regime 1 → Regime 3 5.24% 0.8750

Regime 3 → Regime 1 2.19% 0.7163

Regime 2 → Regime 3 17.17% 0.4589

Regime 3 → Regime 2 −11.20% 0,2891

Figure 8: Body1 implied volatility surface

Figure 9: Body2 implied volatility surface
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the evolution of the smile problem), we shall expect to witness increas-
ingly frequent cases where a certain vanilla smile is perfectly matched,
yet certain exotic options are very badly mispriced, or priced just by pure
luck. In other words, we are way past the old debate on whether local
volatility is better, or jump-diffusion is better, or stochastic volatility is
better, on whether they agree or disagree on the exotics, and whether
universal volatility should come and replace them all. Definitely univer-
sal volatility is the answer and Lipton’s model has somewhat outgrown
Lipton’s article. As universal volatility models or SVJ models (stochastic
volatility + jumps) seem unavoidable, the preoccupying issue today is
how to avoid a dilemma, occurring within the same universal volatility
model, such as embodied by Body1 and Body2. 

You can easily imagine what the obvious trap would be. “How shall
we distinguish between multiple local minima, such as Body1 and
Body2, and pick the right one?” and you may be tempted to answer: “Let
us pick the solution that fits the vanillas best, down to the last penny!”
This is what a well-known analytics vendor seem to be proposing. Their
way out of the dilemma is that a simulated annealing algorithm shall
find the global minimum of the loss function involving the vanillas only! Has anyone
worried where that would leave the exotics? We live in a very dangerous
world indeed.

We know what the right proposal should be. Include the one-touches, or
other relevant exotic options, in the calibration procedure. As a matter of fact, cali-
brating to the one-touches together with the vanillas transforms the ill-
posed problem into a well-posed one. We will no longer try to reach for
the global minimum among many local minima, but for a unique global
minimum, full stop.

To illustrate that, we calibrate Body to the vanilla smile and to the
whole collection of one-touches produced by Body1 (Table 10), yet we select as ini-
tial guess of parameters the solution produced by Body2 (Table 9}). This way we
can see whether the one-touches will pull us out of what used to be the
wrong local minimum. The calibration result is summarized in Table 12.
We call it “Body1Double,” and check it against Body1. Our minimization
routine is a standard Newton method.

Notice the following interesting phenomenon. Within an acceptable
numerical tolerance, Body1Double and Body1 seem to agree on the

Figure 10: Cross-sections of the implied volatility surfaces shown in
Figures 8 and 9 at three different maturities

TABLE 10. ONE-TOUCH PRICES INFERRED BY BODY1 AND BODY2

One-Touches
Maturity (year fraction) −5% −10% −20% −30% −50% 50% 30% 20% 10% 5%
0.175 Body1 0.51% −1.26% −3.81% −5.37% −6.44% −6.13% −7.81% −8,36% −6.08% −3.58%

Body2 3.99% 0.51% −5.80% −10.45% −14.78% −7.72% −7.01% −5.91% −4.18% −2.66%

1.5 Body1 7.15% 6.23% 2.44% −1.70% −8.19% −3.04% −6.64% −7.89% −6.67% −4.04%

Body2 8.78% 8.94% 6.63% 3.08% −4.88% −3.62% −7.76% −8.16% −5.98% −3.55%

5 Body1 8.12% 8.74% 7.56% 5.17% −0.87% 0.02% −2.63% −4.10% −4.45% −3.30%

Body2 8.06% 9.12% 8.74% 7.10% 2.43% −0.11% −3.14% −4.65% −4.59% −3.17%

11). Notice that it is the same model (Body) that is producing agreement
on the vanillas and total disagreement on the barriers between two cali-
bration instances. The situation is different from the case of agree-
ment/disagreement between two different models, such as local volatility
and stochastic volatility, or jump-diffusion. Those simpler models simply
disagree with each other because of a big difference in what otherwise
qualifies as simple stochastic structure. It is not even guaranteed that they
can fit a complete vanilla smile surface. Their case is somewhat compa-
rable to the agreement/disagreement we found between Baby1 and
Baby2. When the stochastic structures become complex, however, and
start combining stochastic volatility and  correlated return jumps and
volatility jumps (in models such as Body, or universal volatility, which
seem to be imposed on us anyway by the natural course of events and by
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Brownian diffusion in all three regimes and on the Poisson jump sizes
and intensities taking us from Regime 1 to Regime 2 and 3. They also
agree on the Poisson jumps leading from Regime 3 to Regime 1 and 2.
However, Body1Double and Body1 seem to have switched the Poisson
jumps leading from Regime 2 to Regimes 1 and 3. The explanation is that
total volatility is roughly the same in Regime 1 and Regime 3 (while it is
much higher in Regime 2), and that the only things that the underlying
can “see,” once in Regime 2, are the total volatility of the Regime it will visit
next and the Poisson jumps of course. While formally different, Body1 and
Body1Double are in fact perfectly equivalent solutions (as when you permu-
tate the regimes). As a matter of fact, we can check how well they agree on
the pricing of the Put 103 knocked-out at 95, for different spot prices and dif-
ferent regimes (Figure 11).

5.1.3 Full Body, anybody, and nobody

You may wonder what is so special about the stochastic structure of Body.
Nothing really, except that it has the minimum features that seem to be
required to capture the phenomenology of smile and smile dynamics. As

far as we are concerned, this is the only thing that counts.
The question whether volatility should be diffusing rather
than jumping in between discrete states, whether the
Poisson jump distribution should be continuous rather
than discrete, is in the last resort an aesthetic question
(and often driven by the desire of analytical solutions). And
there is just no way we could discriminate between the
probability distributions of such models, by looking at the
time series of the underlying. Volatility of volatility is hard-

ly measurable. Not mentioning that every continuous model turns “dis-
crete” when solved numerically.

To the aesthetically-minded, however, we can always suggest that
Body can be further worked out into a full-bodied version that we call
“Full Body.” There is no limitation to the number of volatility regimes we
may want to consider, so a continuum of regimes is in theory possible.
And there is no limitation either to the number of Poisson jumps occur-
ring between regimes or within regimes. As we shift between Regime 1
and Regime 2, it could be a random draw whether the concurrent return
jump is positive or negative, and of what size. And Regime 1 could be
characterized, not just by a Brownian diffusion, but also by a collection of
Poisson jumps occurring within that regime. Body is very flexible and
can mimic any given model. Body is really anybody’s model. Or it can be
everybody’s model at the same time (for instance Regime 1 can harbour a
full local volatility model, Regime 2 a full Heston model, Regime 3 a full
Merton model, etc.). Yet Body will always be the dynamic, perfectly inter-
temporally consistent, version of such “mixings,” by contrast to what has
come to be known as the “mixture” or “ensemble” approach (Gatarek
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TABLE 11: PRICING BY BODY1 AND
BODY2 OF A PUT 103, KNOCKED OUT
AT 95, WITH A 90-DAY MATURITY

Price
Body1 0.99

Body2 1.29

TABLE 12: COMPARISON OF THE PARAMETERS AND TOTAL
VOLATILITY NUMBERS OF BODY1DOUBLE AND BODY1

Brownian Diffusion Total volatility
Body1Double Body1 Body1Double Body1

Regime 1 9.55% 9.57% 11.69% 11.67%

Regime 2 6.44% 6.24% 32.23% 32.50%

Regime 3 2.41% 2.253% 11.88% 11.76%

Jump size Jump intensity
Body1Double Body1 Body1Double Body1

Regime 1 → Regime 2 −9.05% −9.07% 0.2405 0.2370

Regime 2 → Regime 1 25.02% 62.67% 1.1279 0.0855

Regime 1 → Regime 3 2.79% 2.72% 3.3208 3.3951

Regime 3 → Regime 1 −3.07% −3.17% 2.9882 2.9777

Regime 2 → Regime 3 65.12% 24.63% 0.0729 1.0944

Regime 3 → Regime 2 −22.68% −22.66% 0.2025 0.2040

Figure 11: Price of the Put 103 down-and-out at 95 against the
underlying price using Body1 and Body1Double parameters, in all
three regimes



92 Wilmott magazine

(2003), Johnson, Lee (2003)). We should really be talking of “superposi-
tions of models” in our case rather that “mixtures” (if we may borrow
this crucial distinction from quantum mechanics), in order to distance
ourselves from the unhappy “ensemble” approach. 

Full Body is in fact a general structure, a family of models rather than
a model. The way people are used to think about regimes is in temporal
succession. A regime of “sticky strike” smile behaviour can follow a
regime of “sticky delta,” etc. In the limit, we propose that you wake up
every day in a state of stochastic superposition of such regimes (yet, we
repeat, with total inter-temporal consistency and homogeneity), and that
you watch for the market prices (one-touches, forward starting options,
etc.) that will best determine the superposition. This may sound as the
end of modelling to some people: “Black-Scholes, Merton, Heston, SABR,
Bates, sticky-strike, sticky-delta, etc., those are models, those are good
names!” Indeed so. Our model deserves no name.

5.2 The hedging issue: Optimal hedging

Let us now explore the other side of the smile problem, which we said
was intimately linked to the pricing of exotic options, namely the dis-
crepancy that may occur between the hedging strategies of two different
models despite their being calibrated to the same vanilla smile. Before
we do so, however, we have to introduce a fundamental concept. In all
the smile models we’ve been considering (jump-diffusion, stochastic
volatility, universal volatility) markets are incomplete. In other words,
contingent claims cannot be replicated with the underlying alone.
Indeed the Black-Scholes argument of self-financing, perfect dynamic
hedging breaks down in the presence of jumps and/or stochastic volatili-
ty. Local volatility smile models try desperately to save the complete mar-
ket paradigm, but are unrealistic precisely for this reason. They imply,
for instance, that a barrier option is perfectly hedgeable with the under-
lying, no matter the volatility smile.

The other models evade the hedging issue altogether. They lay the
stochastic process of the underlying in the risk-neutral world directly,
and assume that option value is the discounted expectation of payoff
under the risk-neutral measure8. While this guarantees that their option
prices do not create instant arbitrage opportunities, they offer no guar-
antee that the option value is “arbitraged” against the process of the
underlying, in the Black-Scholes sense of “volatility arbitrage.” In other
words, you cannot hedge the option with the underlying, and “lock” the
option value at the inception of the trade, through subsequent dynamic
action on the underlying. All you are offered in terms of hedging is the
partial derivative with respect to underlying—never a hedge in the pres-
ence of jumps—or some “external” bucketing of the volatility surface,
which almost certainly contradicts the assumptions of the model. 

What is needed is a theory of option pricing and hedging in incom-
plete markets. We will introduce the concept of “optimal dynamic hedg-
ing.” By that we mean a self-financing dynamic portfolio, involving the
underlying and the money account, which optimally replicates the

derivative instrument, in some sense of “optimality.” Our choice of crite-
rion is the minimization of the variance of the P&L of the total portfolio.
In other words, we draw on stochastic control theory to propose a self-
financing dynamic hedging strategy for the derivative that lets you
break-even on average and guarantees that the distribution of your P&L is
the most “sharply peaked at zero” that can be. We then propose as a defi-
nition of “derivative instrument value” the initial cost of the self-financ-
ing optimal hedging strategy. And we find that the initial cost of the
optimal self-financing replicating portfolio has the property of a pricing
operator, therefore behaves like a risk-neutral probability (Henrotte
(2002)).

Because our optimal hedging takes place in the real world, and our
risk-neutral probability measure is associated with optimal hedging, we
are able to link our risk-neutral probability with the real probability.
Calibration and pricing can take place in the risk-neutral world. Since
our process parameters are inferred from the market prices of options, it
is as if we were reverse-engineering the pricing operator from those trad-
ed prices, and reapplying it to find the unknown prices of some other
options. However, when we start worrying about hedging the option, this
can only take place in the real world and necessitates the transformation
of the probability measure. This transformation requires an independent
input: the market price of risk of the underlying, or its Sharpe ratio.

We also define the variable HERO (Hedging Error at Replicating Optimum)
as the minimized standard deviation of the hedged portfolio. HERO is the
measure of market incompleteness with regard to the given instrument.
It may be large either because the underlying is “incomplete” (large
jumps, stochastic volatility. . .) or because the payoff is complex
(exotics. . .). In the absence of jumps and stochastic volatility, our optimal
hedge would indeed coincide with the Black-Scholes perfect hedge, and
HERO would collapse to zero. Alternatively, the HERO of the underlying
is trivially zero, no matter the stochastic process.

5.3 The “true” smile dynamics

Let us now go back to our solemn question: “Can we have control over the
smile dynamics in homogeneous models?” At first blush, It seems the
answer is no. Indeed, in space homogeneous models, Euler’s theorem
implies the following relation:

C = S(∂C/∂S) + K(∂C/∂K) (1)

where C is the vanilla option price, S the underlying price and K the
option strike.

C, S, K and ∂C/∂K being fixed for a fixed smile surface, this implies
∂C/∂S, or 
, is fixed. So it seems that two homogeneous models will
agree on the option delta when they are calibrated to the same smile, no
matter their respective stochastic structures. The Merton model, the
Heston model, the Bates model, the SABR model when β = 1, will all pro-
duce the same vanilla option delta. Only space inhomogeneous models
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(like local volatility or universal volatility which involve an explicit rela-
tion between the diffusion coefficient and the underlying), can yield a
different delta, because of the corrective term they introduce (see
Equation 7).

But we wonder. Is 
 = ∂C/∂S the right measure of smile dynamics?
The answer is clearly “yes” in the local volatility case where the underly-
ing is the sole driving variable. However, in models involving another
state variable, typically in stochastic volatility or universal volatility mod-
els, one cannot realistically move the underlying over an infinitesimal
time interval and freeze the other  variable. As volatility is correlated
with the underlying, it is very likely that it moves too. Partial derivatives,
such as ∂C/∂S and ∂C/∂σ , capture the smile dynamics only partially.
What we really need is the real time dynamics of the option price. In the
local volatility case, we were able to apply the chain rule to get the real
time delta. The question is, How can we apply the chain rule when
volatility is an indeterministic function of the underlying, i.e. is correlated
with it?

Before we try to answer what seems to be a challenging mathematical
question, let us ask why do we need the information on smile dynamics
in the first place. Obviously in order to determine the number of under-
lying shares that should be held against the derivative, or in other words,
to hedge. Only in the local volatility model does the notion of hedge coin-
cide with the mathematical derivative with respect to underlying. In
incomplete market models, there is no mathematically ready, i.e. non
financial, notion of hedge. We need to form the financial notion of hedge
first (for instance optimal hedging in the sense of minimum variance),
then work out the mathematics. 

We claim that our “optimal hedge” is the substitute of the notion of
smile dynamics in incomplete market models. As a matter of fact, the
whole notion of “smile dynamics” appears to be muddled once the prob-
lem is set in the right frame. It is but a heritage of the local volatility
model—the only place where it finds its meaning—and the whole com-
parison of smile behaviours between local volatility and stochastic
volatility models appears to be ill-founded for that matter (you are not
comparing apples to apples), if all that is meant is the partial derivative
with respect to the underlying. So we might as well drop the whole
notion of smile dynamics and get down to the hedge directly. What good
is the notion of smile dynamics in jump-diffusion mod-
els anyway?

Recall that as the market is incomplete, we can only
hedge optimally, and the HERO reflects how imperfect
the hedge is. The optimal hedge that we produce already
factors in the fact that the underlying may diffuse and
jump, and that volatility may be stochastically varying,
correlated with the underlying. In other words, it cap-
tures precisely the sense of “total derivative” that mathe-
matics alone was unable to give us. What seemed to be a
purely mathematical question (How do we generalize
the chain rule when the functions are indeterministic?)

receives a financial answer once the real purpose of the question is recog-
nized (i.e. hedging).

However, if your only interest in smile dynamics is to predict the
future shape of the smile surface, and not necessarily to hedge, then your
question may admit of a probabilistic answer—and a probabilistic answer
only—outside the one-factor framework. Conditionally on the underlying
trading at some level S at some future date t, you may want to know what
the expected value of the vanilla options may be at that time, or in other
words, what the smile surface may be expected to look like. Expectation here
means probabilistic averaging (either risk-neutral or real) over the possi-
ble states of the other state variables(s), conditionally on the underlying
being in state S. You should bear in mind, though, that this expected value
of the option is a different notion to its future price, as it is purely mathemat-
ical and unrelated to replication.

Therefore the big question really becomes: “Can two homogeneous
models agree on the vanilla option prices, yet disagree on their optimal
hedging strategies?” The answer is a resounding “yes,” as will be seen from
the same Body examples as before. Recall the two instances of our cali-
bration of Body to a full vanilla smile which had resulted in two different
local minima, and consequently, in two different one-touch price struc-
tures. We weren’t sure at the time whether the two solutions implied dif-
ferent smile dynamics, as they agreed on the option delta by homogeneity
and by Euler’s theorem. That they agree on the option price and delta,
yet disagree on the optimal hedge (and HERO) can now be made explicit
(see Table 13).

Only when additional information is included in the calibration, that
is to say, information constraining the conditional transition probabili-
ties, will the models agree on the “smile dynamics.” And this is now
meant both in the sense that they will agree on the exotic option pricing
and that they will agree on the (optimal) hedging strategy. “How do we
gain control over the smile dynamics?” is therefore simply answered by
controlling some exotic option price structures, typically the one-touches
or forward starting options.

This is a general answer, not just specific to homogeneous models.
Indeed, optimal hedging in incomplete markets is a general idea. It is just
that the homogeneous models have helped us make our point more
sharply, thanks to the “surprising” feature due to Euler’s theorem and to
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TABLE 13: BODY1 AND BODY2 OUTPUTS FOR A 107 CALL

Sharpe Ratio 0.1 0.5 0.9
Body1 Body2 Body1 Body2 Body1 Body2

Price 1.0131 1.0189 1.0132 1.0189 1.0132 1.0189

Hero 1.4429 1.2609 1.4429 1.2608 1.2811 1.1238

Optimal hedge 0.2217 0.1543 0.2177 0.1543 0.2409 0.1803
Delta 0.2894 0.2774 0.2895 0.2774 0.2894 0.2774

Gamma 0.0531 0.0540 0.0531 0.0540 0.0531 0.0540
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what seemed to be a loss of control over the option deltas. Also recall that
Hagan and Blacher, who were arguing for control of the smile dynamics
in inhomogeneous models, were not really taking into account what we
have called the true smile dynamics.

In conclusion, there is no need to re-introduce inhomogeneity just for
the sake of fitting a desired smile dynamics or a desired barrier option
price structure. Henrotte’s principle can thus be reiterated: Any depar-
ture from homogeneity should be the cause of great concerns and should
therefore be strongly motivated.

We also find interesting that the answer to what seemed at first an
“innocent” yet very relevant question (“How do I control the smile dynam-
ics in my smile model?”) should require the theory of hedging and pricing in
incomplete markets as indispensable intermediary step. Financially relevant
questions can only be answered by relevant financial theory. The need to go
back to the “basics” is a very welcome conclusion, to say the least, at a
time when quantitative finance seems to be wasting itself in sophisticated
mathematical exercise, or even worse, in sophistical pseudo-models
imported from foreign domains (e.g. the “mixture of models,” or “ensem-
ble,” approach which cannot even afford an inter-temporal process, let
alone a hedging rationale)9.

6 Conclusion: Generalizing
Black-Scholes

We have made the case for the necessity of introducing exotic options in
the calibration phase of the smile model, and the necessity of thinking in
incomplete markets. Smile dynamics is more important than smiles as pric-
ing and hedging are essentially dynamic concepts, and incomplete mar-
kets are omnipresent as smiles are essentially a departure from Black-
Scholes. As a matter of fact, the smile problem really begins with the ques-
tion of the smile dynamics and the question of the hedging rationale10.
These questions had remained hidden from us as long as we remained
blind to the degree of model-dependence in the traditional models.
Calibration to the exotics not only validates the right guess about the
smile dynamics, but it allows us, thanks to an extension of the argument
of optimal dynamic hedging in incomplete markets, to further lock the
implied smile dynamics.

Indeed, stochastic control theory can be invoked again and our opti-
mal dynamic, self-financing, hedging portfolios can be generalized to
include other hedging instruments beside the underlying (see Figures 12
and 13). The price processes of the hedging instruments are independ-
ently available to us as the initial costs of their respective optimal hedg-
ing strategies involving the underlying alone. This guarantees that the
price of the hedged derivative instrument can still be defined as the ini-
tial cost of the composite hedging portfolio, and be independent of the
particular choice of hedging instruments other than the underlying.
Dynamic multi-hedging of a derivative instrument allows the resulting
HERO to be even smaller and the market to approach completeness.

Figure 12: Optimal hedging ratios of the Put 103 KO 95 when either
of the 95 one-touch or the vanilla Put 103 are used for dynamic
hedging in combination with the underlying. The HERO (for
S = 100) is 0.96 when no additional hedging instruments are used.
It is 0.44 when the one-touch is used and 0.73 when the vanilla Put
is used

Figure 13: Optimal hedging ratios of the Put 103 KO 95 when both
the 95 one-touch and the vanilla Put 103 are used for dynamic hedg-
ing in combination with the underlying. The HERO is now nearly zero
over the whole range of spot prices
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Typically a barrier option will be dynamically hedged with a combina-
tion of the underlying, a vanilla option, and a one-touch. A convertible
bond will be hedged with a combination of the underlying, an equity
option and a credit default swap. A complex cliquet will be hedged with
the underlying and a combination of simple forward starting options. 

Calibration should be calibration with a point. It achieves nothing on
its own. Treating the vanillas, the one-touches, the forward starting
options, or the credit default swaps, as alternative liquid instruments
underlying our jump-diffusion/stochastic volatility process, and using
them in the dynamic hedging of the given derivative instrument the
same way that the underlying stock is traditionally used in Black-Scholes,
is the right way to generalize Black-Scholes to the case of smiles. Making
sure that the smile model prices the “underlyings” in agreement with
the market, and that it is calibrated to their dynamics, is in the end no
different from saying that the Black-Scholes model prices the underlying
in agreement with the market and is calibrated to its Brownian volatility.

When the hedging instruments are appropriately chosen, we expect
the hedge ratios to be robust. Our hope is that they may even not depend
on the particular model. In the end, a model is just a piece of machinery,
“cogs and wheels” that allow us to dynamically glue together the appro-
priate derivative instruments. If the relevant dynamics is properly cap-
tured (in other words, if the model is calibrated to the maximum rele-
vant information), and if the hedging instruments are properly chosen,
then the hedging strategy should more or less impose itself naturally. As
a matter of fact, we found that it very often corresponded to the trader’s,
model-independent, intuition. 

Thus we conclude with the disappearance of the model. If solving the
smile problem means finding the right tool, then the directions we have
suggested are indeed the right directions to pursue. This goes hand in
hand with a constant awareness of the perfectibility and relativity of the
tool. What we have proposed in this paper is not so much the “definitive
smile model” as it is the definitive way to think critically about any model. 

But if solving the smile problem means finding the absolutely true
process and the absolute pricing algorithm, then we can safely declare:
“Nobody can solve the smile problem!”
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of that number by the number of spatial state variables. When we say the one-touches

and the forward starting options help determine the smile dynamics, we mean it only rel-

atively. Indeed, we, too, will have to depend on our particular choice of model for impos-

ing the missing constraining structure. We need however to strike the right balance

between the degree of structure imposed by the model and its ability to match the

prices of contingent claims with very different payoff structures. Our solution is original

both in the sense that it avoids the trap of non parametric inference and that it is more

flexible than the traditional parametric models.

5. See Lipton, McGhee (2002)

6. Total volatility includes the Brownian volatility and the volatility due to jumps, it is

expressed by V2
i = v2
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j λi→ j

(
yi→ j

)2
where i denotes the regime

for which the total volatility is calculated, j denotes the regimes i the underlying can

migrate to, k denotes the jumps occuring within regime i. The rest of the notation is

self-explanatory.

7. e.g. Dynamic SABR.

8. Typically, Lipton (2002) writes : “As always, we can evaluate the price of an option as

the discounted expectation of its payout under a risk-neutral measure. We set aside

many important issues related to the incompleteness of the market in the presence of

jumps and stochastic volatility, and use the risk-neutralised dynamics [. . .] throughout.”

9. See Piterbarg (2003) for a sweeping criticism of the ensemble approach.

10. See Ayache (2004)
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